Skip to main content


Log in

Differences in the sialylation patterns of membrane stress proteins in chemical carcinogen-induced tumors developed in BALB/c and IL-1α deficient mice

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript


We evaluated the patterns of sialylation on fibrosarcoma cell lines arising following 3-methylcholanthrene treatments of wild-type and IL-1α-deficient mice; the former induced progressive tumors, whereas the latter cell lines induced regressing tumors or failed to develop into tumors in mice due to immune rejection. In regressing tumors, terminating α2-6-Neu5Ac residues were present at lower levels than in progressively growing tumors. In both tumor cells, the amount of α2-6-Neu5Ac residues was higher by an order of magnitude relative to the amount expressed in primary fibroblasts harvested from IL-1α-deficient and wild-type mice. We focused on membrane proteins, which may interact with the immune system. Interestingly, HSP65, grp75, and gp96 were found on the surfaces of malignant cells and were shown to possess sialylated N-glycans. The amount of trisialylated glycans on gp96 and HSP65 and monosialylated glycans on grp75 of regressing cells was significantly lower than in progressively growing cells, suggesting a dependency of these specific glycoforms on anti-tumor immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others



double distilled water






96 kDa glycoprotein


glucose regulated protein


high performance liquid chromatography


heat shock protein




interleukin 1






major histocompatibility class


molecular weight


N-acetylneuraminic acid


natural killer


natural killer T


isoelectric point


N-glycosidase F




  1. Dube, D.H., Bertozzi, C.R.: Glycans in cancer and inflammation- potential for therapeutics and diagnostics. Nat. Rev. Drug Discov. 4, 477 (2005). doi:10.1038/nrd1751

    Article  CAS  PubMed  Google Scholar 

  2. Fuster, M.M., Esko, J.D.: The sweet and sour of cancer: glycans as novel therapeutic targets. Nat. Rev. Cancer. 5, 526 (2005). doi:10.1038/nrc1649

    Article  CAS  PubMed  Google Scholar 

  3. Dall’olio, F., Chiricolo, M., Altimari, A., Fiorentino, M., Grigioni, W.F.: Expression of β-galactoside sialyltransferase and of α2, 6-sialyltransferase glycoconjugates in normal human liver, hepatocarcinoma and cirrhosis. Glycobiol. 14, 39–49 (2004). doi:10.1093/glycob/cwh002

    Article  Google Scholar 

  4. Dall’olio, F., Chiricolo, M.: Sialyltransferases in cancer. Glycoconj. 18, 841 (2001). doi:10.1023/A:1022288022969

    Article  Google Scholar 

  5. Wang, P.H.: Altered glycosylation in cancer: sialic acids and sialyltransferases. J. Cancer Mol. 1, 73 (2005)

    CAS  Google Scholar 

  6. Seidenfaden, R., Krauter, A., Schretzinger, F., Gerardy-Schahn, R., Hildebrandt, H.: Polysialic acid directs tumor cell growth by controlling heterophilic neural cell adhesion molecule interactions. Mol. Cell. Biol. 23, 5908 (2003). doi:10.1128/MCB.23.16.5908-5918.2003

    Article  CAS  PubMed  Google Scholar 

  7. Swann, J.B., Smyth, M.J.: Immune surveillance of tumors. J. Clin. Invest. 117, 137 (2007). doi:10.1172/JCI31405

    Article  Google Scholar 

  8. Dunn, G.P., Koabel, C.M., Schreiber, R.D.: Interferons, immunity and cancer immunoediting. Nat. Immunol. 6, 836 (2006). doi:10.1038/nri1961

    Article  CAS  Google Scholar 

  9. Apte, R.N., Dotan, S., Elkabets, M., White, R.M., Reich, E., Carmi, Y., Son, X., Dvozkin, T., Kerlin, Y., Voronov, E.: The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and host-interaction. Cancer Metastasis. Rev. 25, 387 (2006). doi:10.1007/s10555-006-9004-4

    Article  CAS  PubMed  Google Scholar 

  10. Krelin, Y., Voronov, E., Dotan, S., Elkabets, M., Reich, E., Fogel, M., Huszar, M., Iwakura, Y., Segal, S., Dinarello, C.A., Apte, R.N.: IL-1 beta-driven inflammation promotes the development and invasiveness of chemical carcinogen-induced tumors. Cancer Res. 67, 1062 (2007). doi:10.1158/0008-5472.CAN-06-2956

    Article  CAS  PubMed  Google Scholar 

  11. Elkabets, M., Krelin, Y., Dotan, S., Cerwenka, A., Porgador, A., Lichtenstein, R.G., Dinarello, C.A., White, M.R., Zoller, M., Voronov, E., Apte, R.N.: Host-derived Interleukin-1α is important in determining the immunogenicity of 3-Methylcholantrene-tumor cells. J. Immunol. 182, 4874 (2009)

    Google Scholar 

  12. Gorelik, E., Xu, F., Henion, T., Anaraki, F., Galili, U.: Reduction of metastatic properties of BL6 melanoma cells expressing terminal fucose(alpha) 1–2-galactose after alpha1, 2-fucosyltransferase cDNA transfection. Cancer Res. 57, 332 (1997)

    CAS  PubMed  Google Scholar 

  13. Shin, B.K., Wang, H., Yim, A.M., Le Naour, F., Brichory, F., Jang, J.H., Zhao, R., Puravs, E., Tra, J., Michael, C.W., Misek, D.E., Hanash, S.M.: Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. J. Biol. Chem. 278, 7607 (2003). doi:10.1074/jbc.M210455200

    Article  CAS  PubMed  Google Scholar 

  14. Küster, B., Wheeler, S.F., Hunter, P.A., Dwek, R.A., Harvey, D.J.: Sequencing of N-glycan oligosaccharides directly from protein gels: In gel deglycosylation and analyzing in HPLC and MALDI-TOF MS. Anal. Biochem. 250, 82 (1997). doi:10.1006/abio.1997.2199

    Article  PubMed  Google Scholar 

  15. Van Damme, E.J.M., Peumans, W.J., Pusztai, A., Bardocz, S.: Handbook of plant lectins: properties and biomedical applications, 1st edn. Willey, England (1998)

    Google Scholar 

  16. Tsuji, S., Datta, A.K., Paulson, J.C.: Systematic nomenclature for sialyltransferases. Glycobiol. 6, V (1996). doi:10.1093/glycob/6.7.647

    Article  CAS  Google Scholar 

  17. Okajima, T., Fukumoto, S., Miyazaki, H., Ishida, H., Kiso, M., Furukawa, K., Urano, T., Furukawa, K.: Molecular cloning of a novel alpha2,3-sialyltransferase (ST3Gal VI) that sialylates type II lactosamine structures on glycoproteins and glycolipids. J. Biol. Chem. 274, 11479 (1999). doi:10.1074/jbc.274.17.11479

    Article  CAS  PubMed  Google Scholar 

  18. Sherman, M., Multhoff, G.: Heat shock proteins in cancer. Ann. N. Y. Acad. Sci. 1113, 192 (2007). doi:10.1196/annals.1391.030

    Article  CAS  PubMed  Google Scholar 

  19. Dunn, G.P., Bruce, A.T., Sheehan, K.C., Shankaran, V., Uppaluri, R., Bui, J.D., Diamond, M.S., Koebel, C.M., Arthur, C., White, J.M., Schreiber, R.D.: A critical function for type I interferons in cancer immunoediting. Nat. Immunol. 6, 722 (2005). doi:10.1038/ni1213

    Article  CAS  PubMed  Google Scholar 

  20. Dunn, G.P., Bruce, A.T., Ikeda, H., Old, L.J., Schreiber, R.D.: Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. Rev. 2, 991 (2002)

    Article  Google Scholar 

  21. Zitvogel, L., Tesniere, A., Kroemer, G.: Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat. Immunol. Rev. 6, 715 (2006). doi:10.1038/nri1936

    Article  CAS  Google Scholar 

  22. Hedlund, M., Ng, E., Varki, A., Varki, N.M.: Alpha 2-6-Linked sialic acids on N-glycans modulate carcinoma differentiation in vivo. Cancer Res. 68, 388 (2008). doi:10.1158/0008-5472.CAN-07-1340

    Article  CAS  PubMed  Google Scholar 

  23. Varki, N.M., Varki, A.: Diversity in cell surface sialic acid presentations: implications for biology and disease. Lab. Invest. 87, 851 (2007). doi:10.1038/labinvest.3700656

    Article  CAS  PubMed  Google Scholar 

  24. Rughetti, A., Pellicciotta, I., Biffoni, M., Bäckström, M., Link, T., Bennet, E.P., Clausen, H., Noll, T., Hansson, G.C., Burchell, J.M., Frati, L., Taylor-Papadimitriou, J., Nuti, M.: Recombinant tumor-associated MUC1 glycoprotein impairs the differentiation and function of dendritic cells. J. Immunol. 174, 7764 (2005)

    CAS  PubMed  Google Scholar 

  25. Nicoll, G., Avril, T., Lock, K., Furukawa, K., Bovin, N., Crocker, P.R.: Ganglioside GD3 expression on target cells can modulate NK cell cytotoxicity via siglec-7-dependent and -independent mechanisms. Eur. J. Immunol. 33, 1642 (2003). doi:10.1002/eji.200323693

    Article  CAS  PubMed  Google Scholar 

  26. Lewis, M.J., Pelham, H.R.: Ligand-induced redistribution of a human KDEL receptor from the Golgi complex to endoplasmic reticulum. Cell. 68, 353 (1992). doi:10.1016/0092-8674(92)90476-S

    Article  CAS  PubMed  Google Scholar 

  27. Altmeyer, A., Maki, G.R., Feldweg, A.M., Heike, M., Protoprov, V.P., Masur, S.K., Srivastava, P.K.: Tumor-specific cell surface expression of the –KDEL containing, endoplasmatic reticular heat shock protein gp96. Int. J. Cancer. 69, 340 (1996). doi:10.1002/(SICI)1097-0215(19960822)69:4<340::AID-IJC18>3.0.CO;2-9

    Article  CAS  PubMed  Google Scholar 

  28. Multhoff, G.: Heat shock protein 70 (HSP70): membrane location, export and immunological relevance. Methods. 43, 229 (2007). doi:10.1016/j.ymeth.2007.06.006

    Article  CAS  PubMed  Google Scholar 

  29. Robert, J., Menoret, M., Cohen, N.: Cell surface expression of the endoplasmatic reticular heat shock protein gp96 is phylogenetically conserved. J. Immunol. 163, 4133 (1999)

    CAS  PubMed  Google Scholar 

  30. Vega, V.L., Rodríguez-Silva, M., Frey, T., Gehrmann, M., Diaz, J.C., Steinem, C., Multhoff, G., Arispe, N., De Maio, A.: Hsp70 translocates into the plasma membrane after stress and is released into the extracellular environment in a membrane-associated form that activates macrophages. J. Immunol. 180, 4299 (2008)

    CAS  PubMed  Google Scholar 

  31. Lee, A.S.: GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res. 67, 3496 (2007). doi:10.1158/0008-5472.CAN-07-0325

    Article  CAS  PubMed  Google Scholar 

  32. Srivastava, P.K.: Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immunity. Annu. Rev. Immunol. 20, 395 (2002). doi:10.1146/annurev.immunol.20.100301.064801

    Article  CAS  PubMed  Google Scholar 

  33. Broere, F.H., Weiten, L., Zee, R.V.D., Berlo, S.: Heat shock proteins induce T cell regulation of chronic inflammation. Ann. Rheum. Dis. 65, 65 (2007)

    Google Scholar 

  34. Doody, A.D.H., Kovalchin, T.J., Mihalyo, M.A., Hagymasi, A.T., Drake, C.G., Adler, A.J.: Glycoprotein 96 can chaperone both MHC class I- and class II-restricted epitopes for in vivo presentation, but selectively primes CD8 + T cell effector function. J. Immunol. 172, 6087 (2004)

    CAS  PubMed  Google Scholar 

  35. Multhoff, G., Pfister, K., Gehrmann, M., Hantschel, M., Gross, C., Hafner, M., Hiddemann, W.: A 14-mer Hsp70 peptide stimulates natural killer (NK) cell activity. Cell Stress Chaperones. 6, 337 (2001). doi:10.1379/1466-1268(2001)006<0337:AMHPSN>2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  36. Dai, J., Liu, B., Caudill, M.M., Zheng, H., Qiao, Y., Podack, E.R., Li, Z.: Cell surface expression of heat shock protein gp96 enhances cross-presentation of cellular antigens and the generation of tumor-specific T cell memory. Cancer Immun. 3, 1 (2003)

    PubMed  Google Scholar 

  37. Hwang, E.M., Kim, D.G., Lee, B.J., Choi, J., Kim, E., Park, N., Kang, D., Han, J., Choi, W.S., Hong, S.G., Park, J.Y.: Alternative splicing generates a novel non-secretable cytosolic isoform of NELL2. Biochem. Biophys. Res. Commun. 353, 805 (2006). doi:10.1016/j.bbrc.2006.12.115

    Article  PubMed  Google Scholar 

  38. Unoki, M., Shen, J.C., Zheng, Z.M., Harris, C.C.: Novel splice variants of ING4 and their possible roles in the regulation of cell growth and motility. J. Biol. Chem. 281, 34677 (2006). doi:10.1074/jbc.M606296200

    Article  CAS  PubMed  Google Scholar 

  39. Pyhtila, B., Zheng, T., Lager, P.J., Keene, J.D., Reedy, M.C., Nicchitta, C.V.: Signal sequence- and translation-independent mRNA localization to the endoplasmic reticulum. RNA. 14, 445 (2008). doi:10.1261/rna.721108

    Article  CAS  PubMed  Google Scholar 

  40. Varki, A.: Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature. 443, 1023 (2007). doi:10.1038/nature05816

    Article  Google Scholar 

  41. Suriano, R., Ghosh, S.K., Ashok, B.T., Mittelman, A., Chen, Y., Banerjee, A., Tiwari, R.K.: Differences in glycosylation patterns of heat shock protein, gp96: implications for prostate cancer prevention. Cancer Res. 65, 6466 (2005). doi:10.1158/0008-5472.CAN-04-4639

    Article  CAS  PubMed  Google Scholar 

  42. Guinez, C., Lemoine, J., Michalski, J.C., Lefebvre, T.: 70-Kda-heat shock protein presents an adjustable lectinic activity towards O-linked N-acethylglucosamine. Biochem. Biophys. Res. Commun. 319, 21 (2004). doi:10.1016/j.bbrc.2004.04.144

    Article  CAS  PubMed  Google Scholar 

  43. Yang, Y., Liu, B., Dai, J., Srivastava, P.K., Zammit, D.J., Lefrancois, L., Li, Z.: Heat shock protein gp96 is a master chaperone for toll-like receptors and is important in the innate function of macrophages. Immunity. 26, 1 (2007). doi:10.1016/j.immuni.2006.12.005

    Article  Google Scholar 

  44. Dwek, R.A.: Glycobiology: toward understanding the function of sugars. Chem. Rev. 96, 683 (1996). doi:10.1021/cr940283b

    Article  CAS  PubMed  Google Scholar 

Download references


The authors thank Dr. Uri Abdu for his help in carrying out fluorescent staining and microscopic imaging and Dr. Yoram Tekoah for helpful advice on glycan analysis by HPLC. This work was supported in part by the Israel Cancer Association and by the Israeli Glycobiology Center of Ben-Gurion University of the Negev, Israel.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Rachel G. Lichtenstein.

Additional information

This study is dedicated to the memory of Professor Shraga Segal

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

List of proteins from membrane fraction of regressive and progressive fibrosarcoma cell lines developed in IL1α-/- and WT mice identified by MS-Tag search. (PDF 103 kb)

Supplementary Figure 1

Flow cytometry of regressive immunogenic and progressive fibrosarcoma cell lines derived from 3-MCA-injected IL-1α-/- and BALB/c mice before (left column) and after neuraminidase treatment (right column). Cells (6 × 106) were incubated with 10 mU of Arthrobacter ureafaciens neuraminidase, (EC, Calbiochem, San Diego, CA) in sodium phosphate buffer, pH = 6.0, for 1 h at 37°C, washed, divided into tubes, and then incubated similar to the untreated cells with varying fluorescent lectins, as described in Materials and Methods. (PDF 280 kb)

Supplementary Figure 2

Immunoblotting of EGFR using anti-mouse EGFR antibody at a concentration of 1 μg/ml per blot. EGFR was extracted from regressive immunogenic and progressive fibrosarcoma cell membranes using a ProteoExtract kit (Calbiochem, San Diego, CA). The immunoblotting of EGFR was performed as described for the immunoblotting of HSPs in the Materials and Methods section. (PDF 91 kb)

Supplementary Figure 3

Immunocytometry of HSP65 (a), grp75 (b), grp78 (c), and fluorescent staining for nuclei and actin in each set is shown. Cells (1 × 104) derived from either 3-MCA-induced fibrosarcoma cells injected into IL-1α-/- and BALB/c mice or from primary fibroblast cells derived from the skin of IL-1α-/- and BALB/c. (PDF 342 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avidan, A., Perlmutter, M., Tal, S. et al. Differences in the sialylation patterns of membrane stress proteins in chemical carcinogen-induced tumors developed in BALB/c and IL-1α deficient mice. Glycoconj J 26, 1181–1195 (2009).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: