Skip to main content

Advertisement

Log in

Disease-associated glycosylated molecular variants of human C-reactive protein activate complement-mediated hemolysis of erythrocytes in tuberculosis and Indian visceral leishmaniasis

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Human C-reactive protein (CRP), as a mediator of innate immunity, removed damaged cells by activating the classical complement pathway. Previous studies have successfully demonstrated that CRPs are differentially induced as glycosylated molecular variants in certain pathological conditions. Affinity-purified CRPs from two most prevalent diseases in India viz. tuberculosis (TB) and visceral leishmaniasis (VL) have differential glycosylation in their sugar composition and linkages. As anemia is a common manifestation in TB and VL, we assessed the contributory role of glycosylated CRPs to influence hemolysis via CRP-complement-pathway as compared to healthy control subjects. Accordingly, the specific binding of glycosylated CRPs with erythrocytes was established by flow-cytometry and ELISA. Significantly, deglycosylated CRPs showed a 7–8-fold reduced binding with erythrocytes confirming the role of glycosylated moieties. Scatchard analysis revealed striking differences in the apparent binding constants (104–105 M−1) and number of binding sites (106–107sites/erythrocyte) for CRP on patients’ erythrocytes as compared to normal. Western blotting along with immunoprecipitation analysis revealed the presence of distinct molecular determinants on TB and VL erythrocytes specific to disease-associated CRP. Increased fragility, hydrophobicity and decreased rigidity of diseased-erythrocytes upon binding with glycosylated CRP suggested membrane damage. Finally, the erythrocyte-CRP binding was shown to activate the CRP-complement-cascade causing hemolysis, even at physiological concentration of CRP (10 μg/ml). Thus, it may be postulated that CRP have a protective role towards the clearance of damaged-erythrocytes in these two diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

αGalNAc:

alpha-N-acetyl Galactosamine

αGlcNAc:

alpha-N-acetyl Glucosamine

α-L-Fuc:

alpha-L-fucose

ABTS:

2, 2′-azino-bis (3-ethylbenzthiazole-6-sulfonic acid)

ANS:

8-anilino-1-napthalenesulfonic acid

BSA:

Bovine Serum Albumin

CaCl2 :

Calcium Chloride

CHAPS:

3-(3-cholamidopropyl) dimethylammonio)-1-propanesulfonic acid

Con A:

Concanavalin A

CRP:

C-reactive protein

CRPTB and CRPVL :

Purified CRP from patients with TB and VL

CRPSigma :

CRP purified from human plasma purchased from Sigma Chemical Company

DAB:

3, 3-diaminobenzidine

DBA:

Dolichos biflorus agglutinin

DIG:

Dioxigenin

DPH:

1,6-diphenyl-1, 3, 5-hexatriene

DSA:

Datura stramonium agglutinin

E:

Erythrocytes

ETB, EVL and EN :

Erythrocytes from TB, VL and normal (N) individuals

EDTA:

Ethylene diamine tetra acetic acid

ELISA:

Enzyme-linked immunosorbent assay

FACS:

Fluorescence activated cell sorter

FITC:

Fluorescein isothiocynate

GLC:

Gas liquid chromatography

GNA:

Galanthus nivalis agglutinin

GVB:

Gelatin-veronal-buffered

HRP:

Horseradish peroxidase

I:

Iodine

IEF:

Isoelectric focussing

IgG:

Immunoglobulin G

kDa:

kilo Dalton

MAA:

Maackia amurensis agglutinin

MAC:

Membrane attack complex

NaCl:

Sodium Chloride

NHS:

Normal human serum

PAGE:

Polyacrylamide gel electrophoresis

PC:

Phosphocholine

PNA:

Peanut agglutinin

SPR:

Surface plasmon resonance

SD:

Standard Deviation

SDS:

Sodium Dodecyl sulphate

SNA:

Sambucus nigra agglutinin

TB:

Tuberculosis

TCA:

Trichloro acetic acid

UEA:

Ulex europaeus agglutinin

VL:

Visceral leishmaniasis

WGA:

Wheat germ agglutinin

References

  1. Agrawal, A.: CRP after 2004. Mol. Immunol. 42, 927–930 (2005). doi:10.1016/j.molimm.2004.09.028

    Article  CAS  PubMed  Google Scholar 

  2. Marnell, L., Mold, C., Du Clos, T.W.: C-reactive protein: ligands, receptors and role in inflammation. Clin. Immunol. 117, 104–111 (2005). doi:10.1016/j.clim.2005.08.004

    Article  CAS  PubMed  Google Scholar 

  3. Volanakis, J.E.: Human C-reactive protein: expression, structure, and function. Mol. Immunol. 38, 189–197 (2001). doi:10.1016/S0161-5890(01)00042-6

    Article  CAS  PubMed  Google Scholar 

  4. Gould, J.M., Weiser, J.N.: Expression of C-reactive protein in the human respiratory tract. Infect. Immun. 69, 1747–1754 (2001). doi:10.1128/IAI.69.3.1747-1754.2001

    Article  CAS  PubMed  Google Scholar 

  5. Jabs, W.J., Logering, B.A., Gerke, P., Kreft, B., Wolber, E.M., Klinger, M.H., Fricke, L., Steinhoff, J.: The kidney as a second site of human C-reactive protein formation in vivo. Eur. J. Immunol. 33, 152–161 (2003). doi:10.1002/immu.200390018

    Article  CAS  PubMed  Google Scholar 

  6. Volanakis, J.E., Kaplan, M.H.: Specificity of C-reactive protein for choline phosphate residues of pneumococcal C-polysaccharide. Proc. Soc. Exp. Biol. Med. 136, 612–614 (1971)

    CAS  PubMed  Google Scholar 

  7. Das, T., Mandal, C., Mandal, C.: Protein A-a new ligand for human C-reactive protein. FEBS Lett. 576, 107–113 (2004). doi:10.1016/j.febslet.2004.08.072

    Article  CAS  PubMed  Google Scholar 

  8. Das, T., Sen, A., Kempf, T., Pramanik, S.R., Mandal, C., Mandal, C.: Induction of glycosylation in human C-reactive protein under different pathological conditions. Biochem. J. 373, 345–355 (2003). doi:10.1042/BJ20021701

    Article  CAS  PubMed  Google Scholar 

  9. Das, T., Mandal, C., Mandal, C.: Variations in binding characteristics of glycosylated human C-reactive proteins in different pathological conditions. Glycoconj. J. 20, 537–543 (2004). doi:10.1023/B:GLYC.0000043290.90182.e6

    Article  CAS  PubMed  Google Scholar 

  10. Du Clos, T.W., Marnell, L., Zlock, L.R., Burlingame, R.W.: Analysis of the binding of C-reactive protein to chromatin subunits. J. Immunol. 146, 1220–1225 (1991)

    PubMed  Google Scholar 

  11. Du Clos, T.W., Zlock, L.T., Marnell, L.: Definition of a C-reactive protein binding determinant on histones. J. Biol. Chem. 266, 2167–2171 (1991)

    PubMed  Google Scholar 

  12. James, K., Hansen, B., Gewurz, H.: Binding of C-reactive protein to human lymphocytes. II. Interaction with a subset of cells bearing the Fc receptor. J. Immunol. 127, 2545–2550 (1981)

    CAS  PubMed  Google Scholar 

  13. Gewurz, H., Mold, C., Siegel, J., Fiedel, B.: C-reactive protein and the acute phase response. Adv. Intern. Med. 27, 345–372 (1982)

    CAS  PubMed  Google Scholar 

  14. Kaplan, M.H., Volanakis, J.E.: Interaction of C-reactive protein complexes with the complement system. I. Consumption of human complement associated with the reaction of C-reactive protein with pneumococcal C-polysaccharide and with the choline phosphatides, lecithin and sphingomyelin. J. Immunol. 112, 2135–2147 (1974)

    CAS  PubMed  Google Scholar 

  15. McGrath, F.D., Brouwer, M.C., Arlaud, G.J., Daha, M.R., Hack, C.E., Roos, A.: Evidence that complement protein C1q interacts with C-reactive protein through its globular head region. J. Immunol. 176, 2950–2957 (2006)

    CAS  PubMed  Google Scholar 

  16. Kottgen, E., Hell, B., Kage, A., Tauber, R.: Lectin specificity and binding characteristics of human C-reactive protein. J. Immunol. 149, 445–453 (1992)

    CAS  PubMed  Google Scholar 

  17. Arese, P., Turrini, F., Schwarzer, E.: Band 3/complement-mediated recognition and removal of normally senescent and pathological human erythrocytes. Cell. Physiol. Biochem. 16, 133–146 (2005). doi:10.1159/000089839

    Article  CAS  PubMed  Google Scholar 

  18. Lutz, H.U.: Innate immune and non-immune mediators of erythrocyte clearance. Cell Mol Biol Noisy-le-grand 50, 107–116 (2004)

    CAS  PubMed  Google Scholar 

  19. Volanakis, J.E., Clements, W.L., Schrohenlohr, R.E.: C-reactive protein: purification by affinity chromatography and physiochemical characterization. J. Immunol. Methods 23, 285–295 (1978). doi:10.1016/0022-1759(78)90203-X

    Article  CAS  Google Scholar 

  20. Christner, R.B., Mortensen, R.F.: Specificity of the binding interaction between human serum amyloid P-component and immobilized human C-reactive protein. J. Biol. Chem. 269, 9760–9766 (1994)

    CAS  PubMed  Google Scholar 

  21. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)

    CAS  PubMed  Google Scholar 

  22. Thompson, D., Pepys, M.B., Wood, S.P.: The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure 7, 169–177 (1999). doi:10.1016/S0969-2126(99)80023-9

    Article  CAS  PubMed  Google Scholar 

  23. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970). doi:10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  24. Towbin, H., Staehelin, T., Gordon, J.: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4354 (1979). doi:10.1073/pnas.76.9.4350

    Article  CAS  PubMed  Google Scholar 

  25. Hunter, W.M.: Handbook of experimental medicine, Weir, D.M. edition, Blackwell Scientific Publication, Oxford, 14.1–14.3 (1978)

  26. Sloneker, J.H.: Gas-liquid chromatography of alditol acetates, methods in carbohydrate chemistry. In: Whistler, R.L., BeMiller, J.N. (eds.) Academic Press Inc., VI, 20–24 (1972)

  27. Lönngren, J., Svensson, S.: Mass spectrometry in structural analysis of natural carbohydrates. Adv. Carbohydr. Chem. Biochem. 29, 41–106 (1974). doi:10.1016/S0065-2318(08)60248-6

    Article  Google Scholar 

  28. Pal, S., Chatterjee, M., Bhattacharya, D.K., Bandhyopadhyay, S., Mandal, C.: Identification and purification of cytolytic antibodies directed against O-acetylated sialic acid in childhood acute lymphoblastic leukemia. Glycobiology 10, 539–549 (2000). doi:10.1093/glycob/10.6.539

    Article  CAS  PubMed  Google Scholar 

  29. O’ Farrell, P.Z., Goodman, H.M., O’ Farrell, P.Z.: High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell 12, 1133–1141 (1977). doi:10.1016/0092-8674(77)90176-3

    Article  Google Scholar 

  30. Coligan E.J., Kruisbeek M.A., Margulies H.D., Shevach M.E., Strober W.: Current protocols in immunology (Wiley Interscience, National Institute of Health, 1993), 32–34 (1993)

  31. Scatchard, G.: The attractions of proteins for small molecules and ions. Ann. N. Y. Acad. Sci. 51, 660–672 (1949). doi:10.1111/j.1749-6632.1949.tb27297.x

    Article  CAS  Google Scholar 

  32. Shukla, A.K., Schauer, R.: Fluorimetric determination of unsubstituted and 9(8)-O-acetylated sialic acids in erythrocyte membranes. Hoppe Seylers Z. Physiol. Chem. 363, 255–262 (1982)

    CAS  PubMed  Google Scholar 

  33. Sharma, V., Chatterjee, M., Mandal, C., Sen, S., Basu, D.: Rapid diagnosis of Indian visceral leishmaniasis using achatinin H, a 9-O-acetylated sialic acid binding lectin. Am. J. Trop. Med. Hyg. 58, 551–554 (1998)

    CAS  PubMed  Google Scholar 

  34. Ghosh, S., Bandyopadhyay, S., Bhattacharya, D.K., Mandal, C.: Altered erythrocyte membrane characteristics during anemia in childhood acute lymphoblastic leukemia. Ann. Hematol. 84, 76–84 (2005). doi:10.1007/s00277-004-0933-0

    Article  CAS  PubMed  Google Scholar 

  35. Osmand, A.P., Mortensen, R.F., Siegel, J., Gewurz, H.: Interactions of C-reactive protein with the complement system. III. Complement-dependent passive hemolysis initiated by CRP. J. Exp. Med. 142, 1065–1077 (1975). doi:10.1084/jem.142.5.1065

    Article  CAS  Google Scholar 

  36. David, M., Pepys, M.B., Hawkins, P.N.: Metabolic and scintigraphic studies of radioiodinated human C-reactive protein in health and diseases. J. Clin. Invest. 91, 1351–1357 (1993). doi:10.1172/JCI116336

    Article  Google Scholar 

  37. Volanakis, J.E., Kaplan, M.H.: Interaction of C-reactive protein complexes with the complement system. II. Consumption of guinea pig complement by CRP complexes: requirement for human C1q. J. Immunol. 113, 9–17 (1974)

    CAS  PubMed  Google Scholar 

  38. Gabay, C., Kushner, I.: Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 340, 448–454 (1999). doi:10.1056/NEJM199902113400607

    Article  CAS  PubMed  Google Scholar 

  39. Kushner, I., Rakita, L., Kaplan, M.H.: Studies of acute-phase protein. II. Localization of Cx-reactive protein in heart in induced myocardial infarction in rabbits. J. Clin. Invest. 42, 286–292 (1963). doi:10.1172/JCI104715

    Article  CAS  PubMed  Google Scholar 

  40. Li, P., Mold, C., Du Clos, T.W.: Sublytic complement attack exposes C-reactive protein binding sites on cell membranes. J. Immunol. 152, 2995–3005 (1994)

    CAS  PubMed  Google Scholar 

  41. Narkates, A.J., Volanakis, J.E.: C-reactive protein binding specificities: artificial and natural phospholipid bilayers. Ann. N. Y. Acad. Sci. 389, 172–182 (1982). doi:10.1111/j.1749-6632.1982.tb22135.x

    Article  CAS  PubMed  Google Scholar 

  42. Pepys, M.B., Baltz, M.L.: Acute phase proteins with special reference to C-reactive protein and related proteins (pentaxins) and serum amyloid A protein. Adv. Immunol. 34, 141–212 (1983). doi:10.1016/S0065-2776(08)60379-X

    Article  CAS  PubMed  Google Scholar 

  43. Pepys, M.B.: C-reactive protein fifty years on. Lancet 1, 653–657 (1981). doi:10.1016/S0140-6736(81)91565-8

    Article  CAS  PubMed  Google Scholar 

  44. Ansar, W., Bandyopadhyay, S.M., Chowdhury, S., Habib, S.H., Mandal, C.: Role of C-reactive protein in complement-mediated hemolysis in Malaria. Glycoconj. J. 23, 233–240 (2006). doi:10.1007/s10719-006-7928-0

    Article  CAS  PubMed  Google Scholar 

  45. Ansar, W., Mandal, C., Habib, S.K.H., Roy, S., Mandal, C.: Unraveling the C-reactive protein complement-cascade in destruction of red blood cells: potential pathological implications in Plasmodium falciparum malaria. Cell. Physiol. Biochem. 23, 175–190 (2009). doi:10.1159/000204106

    Google Scholar 

  46. Paul, I., Mandal, C., Allen, A.K., Mandal, C.: Molecular variants of C-reactive proteins from the major carp Catla catla in fresh and polluted aquatic environments. Glycoconj. J. 18, 547–556 (2001). doi:10.1023/A:1019696430477

    Article  CAS  PubMed  Google Scholar 

  47. Mandal, C., Chatterjee, M., Sinha, D.: Investigation of 9-O-acetylated sialoglycoconjugates in childhood acute lymphoblastic leukaemia. Br. J. Haematol. 110, 801–812 (2000). doi:10.1046/j.1365-2141.2000.02105.x

    Article  CAS  PubMed  Google Scholar 

  48. Sinha, D., Chatterjee, M., Mandal, C.: O-acetylation of sialic acids-their detection, biological significance and alteration in diseases. Trends Glycosci. Glycotechnol. 12, 17–33 (2000)

    CAS  Google Scholar 

  49. Sinha, D., Mandal, C., Bhattacharya, D.K.: Identification of 9-O acetyl sialoglycoconjugates (9-OAcSGs) as biomarkers in childhood acute lymphoblastic leukemia using a lectin, AchatininH, as a probe. Leukemia 13, 119–125 (1999). doi:10.1038/sj.leu.2401312

    Article  CAS  PubMed  Google Scholar 

  50. Mandal, C., Biswas, M., Nagpurkar, A., Mookerjea, S.: Isolation of a phosphoryl choline-binding protein from the hemolymph of the snail, Achatina fulica. Dev. Comp. Immunol. 15, 227–239 (1991). doi:10.1016/0145-305X(91)90016-R

    Article  CAS  PubMed  Google Scholar 

  51. Lasson, A., Goransson, J.: No microheterogenous changes of plasma C-reactive protein found in man during various diseases. Scand. J. Clin. Lab. Invest. 59, 293–304 (1999). doi:10.1080/00365519950185661

    Article  CAS  PubMed  Google Scholar 

  52. Mandal, C., Srinivasan, G.V., Chowdhury, S., Chandra, S., Mandal, C., Schauer, R., Mandal, C.: High level of sialate-O-acetyltransferase activity in lymphoblasts of childhood acute lymphoblastic leukaemia (ALL): enzyme characterization and correlation with disease status. Glycoconj. J. 26, 57–73 (2009). doi:10.1007/s10719-008-9163-3

    Article  CAS  PubMed  Google Scholar 

  53. Sinha, S., Mandal, C.: Microheterogeneity of C-reactive protein in the sera of fish Labeo rohita induced by metal pollutants. Biochem. Biophys. Res. Commun. 226, 681–687 (1996). doi:10.1006/bbrc.1996.1414

    Article  CAS  PubMed  Google Scholar 

  54. Sinha, S., Mandal, C.N., Allen, A.K., Mandal, C.: Acute phase response of C-reactive protein of Labeo rohita to aquatic pollutants is accompanied by the appearance of distinct molecular forms. Arch. Biochem. Biophys. 369, 139–150 (2001). doi:10.1006/abbi.2001.2592

    Article  Google Scholar 

  55. Paul, I., Mandal, C., Mandal, C.: Effect of environmental pollutants on the C-reactive protein of a freshwater major carp, Catla catla. Dev. Comp. Immunol. 22, 519–532 (1998). doi:10.1016/S0145-305X(98)00031-7

    Article  CAS  PubMed  Google Scholar 

  56. Chatterjee, M., Sharma, V., Sundar, S., Sen, S., Mandal, C.: Identification of antibodies directed against O-acetylated sialic acids in visceral leishmaniasis: its diagnostic and prognostic role. Glycoconj. J. 15, 1141–1147 (1998). doi:10.1023/A:1006963806318

    Article  CAS  PubMed  Google Scholar 

  57. Baltz, M.L., De Beer, F.C., Feinstein, A., Munn, E.A., Fletcher, T.C., Taylor, J., Bruton, C., Clamp, J.R., Davies, A.J.S., Pepys, M.B.: Phylogenetic aspects of C-reactive protein and related protein. Ann. N. Y. Acad. Sci. 389, 49–75 (1982). doi:10.1111/j.1749-6632.1982.tb22125.x

    Article  CAS  PubMed  Google Scholar 

  58. Mold, C., Gurulé, C., Otero, D., Du Clos, T.W.: Complement-dependent binding of C-reactive protein complexes to human erythrocyte CR1. Clin. Immunol. Immunopathol. 8, 153–160 (1996). doi:10.1006/clin.1996.0171

    Article  Google Scholar 

  59. Davies, K.A., Hird, V., Stewart, S., Sivolapenko, G.B., Jose, P., Epenetos, A.A., Walport, M.J.: A study of in vivo immune complex formation and clearance in man. J. Immunol. 144, 4613–4620 (1990)

    CAS  PubMed  Google Scholar 

  60. Kundu, M., Basu, J., Chakrabarti, P.: Chronic myelogenous leukemia: alterations in red cell membrane band 3 and increased IgG binding. Indian J. Biochem. Biophys. 27, 456–459 (1990)

    CAS  PubMed  Google Scholar 

  61. Roy, S.S., Sen, G., Biswas, T.: Role of sulfhydryl groups in band 3 in the inhibition of phosphate transport across erythrocyte membrane in visceral leishmaniasis. Arch. Biochem. Biophys. 436, 121–127 (2005). doi:10.1016/j.abb.2005.01.015

    Article  CAS  PubMed  Google Scholar 

  62. Mukherjee, K., Chowdhury, S., Mondal, S., Mandal, C., Chandra, S., Bhadra, R.K., Mandal, C.: 9-O-acetylated GD3 triggers programmed cell death in mature erythrocytes. Biochem. Biophys. Res. Commun. 362, 651–657 (2007). doi:10.1016/j.bbrc.2007.08.048

    Article  CAS  PubMed  Google Scholar 

  63. Gupta, R.K., Pande, A.H., Gulla, K.C., Gabius, H.J., Hajela, K.: Carbohydrate-induced modulation of cell membrane. VIII. Agglutination with mammalian lectin galectin-1 increases osmofragility and membrane fluidity of trypsinized erythrocytes. FEBS Lett. 580, 1691–1695 (2006). doi:10.1016/j.febslet.2006.02.006

    Article  CAS  PubMed  Google Scholar 

  64. Pande, A.H., Sumati, N., Hajela, N., Hajela, K.: Carbohydrate induced modulation of cell membrane VII. Binding of exogenous lectin increases osmofragility of erythrocytes. FEBS Lett. 427, 21–24 (1998). doi:10.1016/S0014-5793(98)00384-6

    Article  CAS  PubMed  Google Scholar 

  65. Hajela, K., Pande, A.H., Sumati, N.: Carbohydrate induced modulation of cell membrane. VI. Binding of exogenous lectin induces susceptibility of erythrocytes to free radical damage: a spin label study. FEBS Lett. 406, 255–258 (1997). doi:10.1016/S0014-5793(97)00272-X

    Article  CAS  PubMed  Google Scholar 

  66. Volanakis, J.E., Wirtz, K.W.: Interaction of C-reactive protein with artificial phosphatidylcholine bilayers. Nature 281, 155–157 (1979). doi:10.1038/281155a0

    Article  CAS  PubMed  Google Scholar 

  67. Deuticke, B., Lutkemeier, P., Sistemich, M.: Ion selectivity of aqueous leaks induced in the erythrocyte membrane by cross linking of membrane proteins. Biochim. Biophys. Acta 775, 150–160 (1984). doi:10.1016/0005-2736(84)90165-2

    Article  CAS  PubMed  Google Scholar 

  68. Agrawal, A., Volanakis, J.E.: Probing the C1q-binding site on human C-reactive protein by site-directed mutagenesis. J. Immunol. 152, 5404–5410 (1994)

    CAS  PubMed  Google Scholar 

  69. Agrawal, A., Shrive, A.K., Greenhough, T.J., Volanakis, J.E.: Topology and structure of the C1q-binding site on C-reactive protein. J. Immunol. 166, 3998–4004 (2001)

    CAS  PubMed  Google Scholar 

  70. Chava, A.K., Chatterjee, M., Sharma, V., Sundar, S., Mandal, C.: Variable degree of alternative complement pathway-mediated hemolysis in Indian visceral leishmaniasis induced by differential expression of 9-O-acetylated sialoglycans. J. Infect. Dis. 189, 1257–1264 (2004). doi:10.1086/382752

    Article  CAS  PubMed  Google Scholar 

  71. Bandyopadhyay, S., Chatterjee, M., Das, T., Bandyopadhyay, S., Sundar, S., Mandal, C.: Antibodies directed against O-acetylated sialoglycoconjugates accelerate complement activation in Leishmania donovani promastigotes. J. Infect. Dis. 190, 2010–2019 (2004). doi:10.1086/425519

    Article  CAS  PubMed  Google Scholar 

  72. Sharma, V., Chatterjee, M., Sen, G., Kumar, C.A., Mandal, C.: Role of linkage specific 9-O-acetylated sialoglycoconjugates in activation of the alternate complement pathway in mammalian erythrocytes. Glycoconj. J. 17, 887–893 (2000). doi:10.1023/A:1010925414222

    Article  CAS  PubMed  Google Scholar 

  73. Berman, S., Gewurz, H., Mold, C.: Binding of C-reactive protein to nucleated cells leads to complement activation without cytolysis. J. Immunol. 136, 1354–1359 (1986)

    CAS  PubMed  Google Scholar 

  74. Klegeris, A., Singh, E.A., McGeer, P.L.: Effects of C-reactive protein and pentosan polysulphate on human complement activation. Immunology 106, 381–388 (2002). doi:10.1046/j.1365-2567.2002.01425.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the Council of Scientific and Industrial Research (CSIR), I.I.C.B, Department of Science and Technology and the Indian Council of Medical Research, Govt. of India. W.A and S.M receive their Senior Research fellowships from CSIR; S.B from University Grants Commission. We are thankful to Sajal Samanta and Biswajit Khatua; Suchandra Chowdhury, Kaushik Bhattacharya for FACS; Asish Mallick for their help; Samir Roy for SPR and Sandip Chakrabarty for MALDI-TOF analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chitra Mandal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ansar, W., Mukhopadhyay, S., Habib, S.H. et al. Disease-associated glycosylated molecular variants of human C-reactive protein activate complement-mediated hemolysis of erythrocytes in tuberculosis and Indian visceral leishmaniasis. Glycoconj J 26, 1151–1169 (2009). https://doi.org/10.1007/s10719-009-9236-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-009-9236-y

Keywords

Navigation