Skip to main content

Advertisement

Log in

Cervical mucins carry α(1,2)fucosylated glycans that partly protect from experimental vaginal candidiasis

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Cervical mucins are glycosylated proteins that form a protective cervical mucus. To understand the role of mucin glycans in Candida albicans infection, oligosaccharides from mouse cervical mucins were analyzed by liquid chromatography-mass spectrometry. Cervical mucins carry multiple α(1-2)fucosylated glycans, but α(1,2)fucosyltransferase Fut2-null mice are devoid of these epitopes. Epithelial cells in vaginal lavages from Fut2-null mice lacked Ulex europaeus agglutinin-1 (UEA-I) staining for α(1-2)fucosylated glycans. Hysterectomy to remove cervical mucus eliminated UEA-I and acid mucin staining in vaginal epithelial cells from wild type mice indicating the cervix as the source of UEA-I positive epithelial cells. To assess binding of α(1-2) fucosylated glycans on C. albicans infection, an in vitro adhesion assay was performed with vaginal epithelial cells from wild type and Fut2-null mice. Vaginal epithelial cells from Fut2-null mice were found to bind increased numbers of C. albicans compared to vaginal epithelial cells obtained from wild type mice. Hysterectomy lessened the difference between Fut2-null and wild type mice in binding of C. ablicans in vitro and susceptibility to experimental C. albicans vaginitis in vivo. We generated a recombinant fucosylated MUC1 glycanpolymer to test whether the relative protection of wild type mice compared to Fut2-null mice could be mimicked with exogenous mucin. While a small portion of the recombinant MUC1 epitopes displayed α(1-2)fucosylated glycans, the predominant epitopes were sialylated due to endogenous sialyltransferases in the cultured cells. Intravaginal instillation of recombinant MUC1 glycanpolymer partially reduced experimental yeast vaginitis suggesting that a large glycanpolymer, with different glycan epitopes, may affect fungal burden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CFU:

Colony forming unit

Fut2:

a(1,2)fucosyltransferase “Secretor” gene

UEA-I:

Ulex europaeus agglutinin I

References

  1. Kelly, R.J., Rouquier, S., Giorgi, D., Lennon, G.G., Lowe, J.B.: Sequence and expression of a candidate for the human Secretor blood group alpha(1,2)fucosyltransferase gene (FUT2). Homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype. J. Biol. Chem. 270, 4640–4649 (1995). doi:10.1074/jbc.270.9.4640

    Article  CAS  PubMed  Google Scholar 

  2. Chaim, W., Foxman, B., Sobel, J.D.: Association of recurrent vaginal candidiasis and secretory ABO and Lewis phenotype. J. Infect. Dis. 176, 828–830 (1997). doi:10.1086/517314

    Article  CAS  PubMed  Google Scholar 

  3. Kulkarni, D.G., Venkatesh, D.: Non-secretor status; a predisposing factor for vaginal candidiasis. Indian J. Physiol. Pharmacol. 48, 225–229 (2004)

    PubMed  Google Scholar 

  4. Sobel, J.D., Wiesenfeld, H.C., Martens, M., Danna, P., Hooton, T.M., Rompalo, A., Sperling, M., Livengood 3rd, C., Horowitz, B., Von Thron, J., Edwards, L., Panzer, H., Chu, T.C.: Maintenance fluconazole therapy for recurrent vulvovaginal candidiasis. N. Engl. J. Med. 351, 876–883 (2004). doi:10.1056/NEJMoa033114

    Article  CAS  PubMed  Google Scholar 

  5. Fidel Jr, P.L.: Immunity to Candida. Oral Dis. 8(Suppl 2), 69–75 (2002). doi:10.1034/j.1601-0825.2002.00015.x

    Article  PubMed  Google Scholar 

  6. Nawrot, U., Grzybek-Hryncewicz, K., Zielska, U., Czarny, A., Podwinska, J.: The study of cell-mediated immune response in recurrent vulvovaginal candidiasis. FEMS Immunol. Med. Microbiol. 29, 89–94 (2000). doi:10.1111/j.1574-695X.2000.tb01509.x

    Article  CAS  PubMed  Google Scholar 

  7. Wormley Jr, F.L., Cutright, J., Fidel Jr, P.L.: Multiple experimental designs to evaluate the role of T-cell-mediated immunity against experimental vaginal Candida albicans infection. Med. Mycol. 41, 401–409 (2003). doi:10.1080/3693780310001597683

    Article  CAS  PubMed  Google Scholar 

  8. Fidel Jr, P.L.: History and update on host defense against vaginal candidiasis. Am. J. Reprod. Immunol. 57, 2–12 (2007). doi:10.1111/j.1600-0897.2006.00450.x

    Article  PubMed  Google Scholar 

  9. Barousse, M.M., Steele, C., Dunlap, K., Espinosa, T., Boikov, D., Sobel, J.D., Fidel Jr, P.L.: Growth inhibition of Candida albicans by human vaginal epithelial cells. J. Infect. Dis. 184, 1489–1493 (2001). doi:10.1086/324532

    Article  CAS  PubMed  Google Scholar 

  10. Steele, C., Leigh, J., Swoboda, R., Ozenci, H., Fidel Jr, P.L.: Potential role for a carbohydrate moiety in anti-Candida activity of human oral epithelial cells. Infect. Immun. 69, 7091–7099 (2001). doi:10.1128/IAI.69.11.7091-7099.2001

    Article  CAS  PubMed  Google Scholar 

  11. Barousse, M.M., Espinosa, T., Dunlap, K., Fidel Jr, P.L.: Vaginal epithelial cell anti-Candida albicans activity is associated with protection against symptomatic vaginal candidiasis. Infect. Immun. 73, 7765–7767 (2005). doi:10.1128/IAI.73.11.7765-7767.2005

    Article  CAS  PubMed  Google Scholar 

  12. Yano, J., Lilly, E.A., Steele, C., Fortenberry, D., Fidel Jr, P.L.: Oral and vaginal epithelial cell anti-Candida activity is acid labile and does not require live epithelial cells. Oral Microbiol. Immunol. 20, 199–205 (2005)

    CAS  PubMed  Google Scholar 

  13. Vardar-Unlu, G., McSharry, C., Douglas, L.J.: Fucose-specific adhesins on germ tubes of Candida albicans. FEMS Immunol. Med. Microbiol. 20, 55–67 (1998). doi:10.1016/S0928-8244(97)00107-7

    Article  CAS  PubMed  Google Scholar 

  14. Brassart, D., Woltz, A., Golliard, M., Neeser, J.R.: In vitro inhibition of adhesion of Candida albicans clinical isolates to human buccal epithelial cells by Fuc alpha 1–2Gal beta-bearing complex carbohydrates. Infect. Immun. 59, 1605–1613 (1991)

    CAS  PubMed  Google Scholar 

  15. Cameron, B.J., Douglas, L.J.: Blood group glycolipids as epithelial cell receptors for Candida albicans. Infect. Immun. 64, 891–896 (1996)

    CAS  PubMed  Google Scholar 

  16. Hurd, E.A., Domino, S.E.: Increased susceptibility of secretor factor gene Fut2-null mice to experimental vaginal candidiasis. Infect. Immun. 72, 4279–4281 (2004). doi:10.1128/IAI.72.7.4279-4281.2004

    Article  CAS  PubMed  Google Scholar 

  17. Domino, S.E., Hurd, E.A.: LacZ expression in Fut2-LacZ reporter mice reveals estrogen-regulated endocervical glandular expression during estrous cycle, hormone replacement, and pregnancy. Glycobiology 14, 169–175 (2004). doi:10.1093/glycob/cwh019

    Article  CAS  PubMed  Google Scholar 

  18. Domino, S.E., Zhang, L., Gillespie, P.J., Saunders, T.L., Lowe, J.B.: Deficiency of reproductive tract alpha(1, 2) fucosylated glycans and normal fertility in mice with targeted deletions of the FUT1 or FUT2 alpha(1, 2) fucosyltransferase locus. Mol. Cell. Biol. 21, 8336–8345 (2001). doi:10.1128/MCB.21.24.8336-8345.2001

    Article  CAS  PubMed  Google Scholar 

  19. Schulz, B.L., Packer, N.H., Karlsson, N.G.: Small-scale analysis of O-linked oligosaccharides from glycoproteins and mucins separated by gel electrophoresis. Anal. Chem. 74, 6088–6097 (2002). doi:10.1021/ac025890a

    Article  CAS  PubMed  Google Scholar 

  20. Zhao, X., Oh, S.H., Cheng, G., Green, C.B., Nuessen, J.A., Yeater, K., Leng, R.P., Brown, A.J., Hoyer, L.L.: ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin; functional comparisons between Als3p and Als1p. Microbiology 150, 2415–2428 (2004). doi:10.1099/mic.0.26943-0

    Article  CAS  PubMed  Google Scholar 

  21. Casanova, M., Cervera, A.M., Gozalbo, D., Martinez, J.P.: Hemin induces germ tube formation in Candida albicans. Infect. Immun. 65, 4360–4364 (1997)

    CAS  PubMed  Google Scholar 

  22. Backstrom, M., Link, T., Olson, F.J., Karlsson, H., Graham, R., Picco, G., Burchell, J., Taylor-Papadimitriou, J., Noll, T., Hansson, G.C.: Recombinant MUC1 mucin with a breast cancer-like O-glycosylation produced in large amounts in Chinese-hamster ovary cells. Biochem. J. 376, 677–686 (2003). doi:10.1042/BJ20031130

    Article  PubMed  CAS  Google Scholar 

  23. Andersch-Bjorkman, Y., Thomsson, K.A., Holmen Larsson, J.M., Ekerhovd, E., Hansson, G.C.: Large scale identification of proteins, mucins, and their O-glycosylation in the endocervical mucus during the menstrual cycle. Mol. Cell. Proteomics 6, 708–716 (2007). doi:10.1074/mcp.M600439-MCP200

    Article  PubMed  CAS  Google Scholar 

  24. Thomsson, K.A., Schulz, B.L., Packer, N.H., Karlsson, N.G.: MUC5B glycosylation in human saliva reflects blood group and secretor status. Glycobiology 15, 791–804 (2005). doi:10.1093/glycob/cwi059

    Article  CAS  PubMed  Google Scholar 

  25. Domino, S.E., Zhang, L., Lowe, J.B.: Molecular cloning, genomic mapping, and expression of two secretor blood group alpha (1, 2) fucosyltransferase genes differentially regulated in mouse uterine epithelium and gastrointestinal tract. J. Biol. Chem. 276, 23748–23756 (2001). doi:10.1074/jbc.M100735200

    Article  CAS  PubMed  Google Scholar 

  26. Fidel Jr, P.L., Sobel, J.D.: Immunopathogenesis of recurrent vulvovaginal candidiasis. Clin. Microbiol. Rev. 9, 335–348 (1996)

    PubMed  Google Scholar 

  27. Fidel Jr, P.L., Cutright, J., Steele, C.: Effects of reproductive hormones on experimental vaginal candidiasis. Infect. Immun. 68, 651–657 (2000). doi:10.1128/IAI.68.2.651-657.2000

    Article  CAS  PubMed  Google Scholar 

  28. Parr, M.B., Parr, E.L.: Mucosal immunity in the female and male reproductive tracts. In: Ogra, P.L., Mestecky, J.J., Lamm, M.E. (eds.) Handbook of mucosal immunity, pp. 677–689. Academic, San Diego (1994)

    Google Scholar 

  29. Zhang, X., Essmann, M., Burt, E.T., Larsen, B.: Estrogen effects on Candida albicans: a potential virulence-regulating mechanism. J. Infect. Dis. 181, 1441–1446 (2000). doi:10.1086/315406

    Article  CAS  PubMed  Google Scholar 

  30. Schaeffer, A.J., Navas, E.L., Venegas, M.F., Anderson, B.E., Kanerva, C., Chmiel, J.S., Duncan, J.L.: Variation of blood group antigen expression on vaginal cells and mucus in secretor and nonsecretor women. J. Urol. 152, 859–864 (1994)

    CAS  PubMed  Google Scholar 

  31. Gipson, I.K.: Mucins of the human endocervix. Front. Biosci. 6, D1245–D1255 (2001). doi:10.2741/Gipson

    Article  CAS  PubMed  Google Scholar 

  32. Hein, M., Valore, E.V., Helmig, R.B., Uldbjerg, N., Ganz, T.: Antimicrobial factors in the cervical mucus plug. Am. J. Obstet. Gynecol. 187, 137–144 (2002). doi:10.1067/mob.2002.123034

    Article  PubMed  Google Scholar 

  33. Nardelli-Haefliger, D., Wirthner, D., Schiller, J.T., Lowy, D.R., Hildesheim, A., Ponci, F., De Grandi, P.: Specific antibody levels at the cervix during the menstrual cycle of women vaccinated with human papillomavirus 16 virus-like particles. J. Natl. Cancer Inst. 95, 1128–1137 (2003)

    Article  PubMed  Google Scholar 

  34. Nowicki, S., Tassell, A.H., Nowicki, B.: Susceptibility to gonococcal infection during the menstrual cycle. JAMA 283, 1291–1292 (2000). doi:10.1001/jama.283.10.1291

    Article  CAS  PubMed  Google Scholar 

  35. Sobel, J.D.: Pathogenesis and treatment of recurrent vulvovaginal candidiasis. Clin. Infect. Dis. 14(Suppl 1), S148–S153 (1992)

    PubMed  Google Scholar 

  36. Ventolini, G., Baggish, M.S.: Post-menopausal recurrent vaginal candidiasis: effect of hysterectomy on response to treatment, type of colonization and recurrence rates post-treatment. Maturitas 51, 294–298 (2005). doi:10.1016/j.maturitas.2004.08.012

    Article  PubMed  Google Scholar 

  37. Murta, E.F., Filho, A.C., Barcelos, A.C.: Relation between vaginal and endocervical pH in pre- and post-menopausal women. Arch. Gynecol. Obstet. 272, 211–213 (2005). doi:10.1007/s00404-005-0740-4

    Article  PubMed  Google Scholar 

  38. Murta, E.F., Silva, A.O., Silva, E.A., Adad, S.J.: Frequency of infectious agents for vaginitis in non- and hysterectomized women. Arch. Gynecol. Obstet. 273, 152–156 (2005). doi:10.1007/s00404-005-0023-0

    Article  PubMed  Google Scholar 

  39. Thomsson, K.A., Hinojosa-Kurtzberg, M., Axelsson, K.A., Domino, S.E., Lowe, J.B., Gendler, S.J., Hansson, G.C.: Intestinal mucins from cystic fibrosis mice show increased fucosylation due to an induced Fucalpha1–2 glycosyltransferase. Biochem. J. 367, 609–616 (2002). doi:10.1042/BJ20020371

    Article  CAS  PubMed  Google Scholar 

  40. Olson, F.J., Backstrom, M., Karlsson, H., Burchell, J., Hansson, G.C.: A MUC1 tandem repeat reporter protein produced in CHO-K1 cells has sialylated core 1 O-glycans and becomes more densely glycosylated if coexpressed with polypeptide-GalNAc-T4 transferase. Glycobiology 15, 177–191 (2005). doi:10.1093/glycob/cwh158

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Paul Fidel for the gift of C. albicans strain 3153A, the personnel of the Cancer Center Research Histology and Immunoperoxidase Core at the University of Michigan for histological processing, Janet Hoff at the Center for Integrative Genomics at the University of Michigan for performing abdominal oophorectomy, Brady West at the Centre for Statistical Consultation and Research of the University of Michigan, the Mammalian Protein Expression Core Facility, and Dr. Hasse Karlsson for assistance with the LC-MS analysis and spectra deduction. This work was supported by grants from the University of Michigan Biomedical Research Council and Horace H. Rackham School of Graduate Studies, the Swedish Research Council (equipment and grant no. 7461), and the IngaBritt and Arne Lundberg Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven E. Domino.

Additional information

Domino and Hurd contributed equally to this study.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

Vaginal epithelial cells obtained by vaginal lavage from wild type and Fut2-null mice stained with UEA-I and Alcian blue pH 2.5 with control panels shown. Wild type and Fut2-null mice underwent either control surgery (ovariectomy alone) or hysterectomy (ovariectomy and total hysterectomy) to remove the entire cervix along with uterus. Intense Alcian blue pH 2.5 mucin staining (top panel) was present in washings from ovariectomized control wild-type (A) and Fut2-null mice (C) but absent in washings from hysterectomized wild type (B) and Fut2-null mice (D). Duplicate slides stained with UEA-I (bottom panel) show specific brown lectin staining associated with vaginal epithelial cells from pseudoestrus ovariectomized wild type mice (E) but absent in washings from pseudoestrus ovariectomized Fut2-null (G), hysterectomized wild type (F) and Fut2-null (H) mice. Bar = 100 μm. (PDF 35.1 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domino, S.E., Hurd, E.A., Thomsson, K.A. et al. Cervical mucins carry α(1,2)fucosylated glycans that partly protect from experimental vaginal candidiasis. Glycoconj J 26, 1125–1134 (2009). https://doi.org/10.1007/s10719-009-9234-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-009-9234-0

Keywords

Navigation