Skip to main content

Advertisement

Log in

A surface plasmon resonance-based solution affinity assay for heparan sulfate-binding proteins

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

A surface plasmon resonance-based solution affinity assay is described for measuring the K d of binding of heparin/heparan sulfate-binding proteins with a variety of ligands. The assay involves the passage of a pre-equilibrated solution of protein and ligand over a sensor chip onto which heparin has been immobilised. Heparin sensor chips prepared by four different methods, including biotin–streptavidin affinity capture and direct covalent attachment to the chip surface, were successfully used in the assay and gave similar K d values. The assay is applicable to a wide variety of heparin/HS-binding proteins of diverse structure and function (e.g., FGF-1, FGF-2, VEGF, IL-8, MCP-2, ATIII, PF4) and to ligands of varying molecular weight and degree of sulfation (e.g., heparin, PI-88, sucrose octasulfate, naphthalene trisulfonate) and is thus well suited for the rapid screening of ligands in drug discovery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Typical range of K d values is 200 nM to 200 pM. BIAapplications Handbook, version AB, 1998.

  2. Most assays are performed at flow rates of 20–40 μL/min which will further reduce the contact time.

Abbreviations

HS:

heparan sulfate

GAG:

glycosaminoglycan

SPR:

surface plasmon resonance

FGF-1:

fibroblast growth factor 1

FGF-2:

fibroblast growth factor 2

VEGF:

vascular endothelial growth factor

IL-8:

interleukin 8

MCP-2:

monocyte chemotactic protein 2

PF4:

platelet factor 4

ATIII:

antithrombin III

ADHZ:

adipic acid dihydrazide

NHS:

N-hydroxysuccinimide

EDC:

N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide

LMWH:

low molecular weight heparin

NTS:

1,3,6-naphthalenetrisulfonate

SOS:

sucrose octasulfate

References

  1. Casu, B., Lindahl, U.: Structure and biological interactions of heparin and heparan sulfate. Adv. Carbohydr. Chem. Biochem. 57, 159–206 (2001)

    Article  PubMed  CAS  Google Scholar 

  2. Whitelock, J.M., Iozzo, R.V.: Heparan sulfate: a complex polymer charged with biological activity. Chem. Rev. 105, 2745–2764 (2005)

    Article  PubMed  CAS  Google Scholar 

  3. Ori, A., Wilkinson, M.C., Fernig, D.G.: The heparanome and regulation of cell function: structures, functions and challenges. Front. Biosci. 13, 4309–4338 (2008)

    Article  PubMed  CAS  Google Scholar 

  4. Esko, J.D., Lindahl, U.: Molecular diversity of heparan sulfate. J. Clin. Invest. 108, 169–173 (2001)

    PubMed  CAS  Google Scholar 

  5. Bishop, J.R., Schuksz, M., Esko, J.D.: Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446, 1030–1037 (2007)

    Article  PubMed  CAS  Google Scholar 

  6. Sasisekharan, R., Shriver, Z., Venkataraman, G., Narayanasami, U.: Roles of heparan-sulphate glycosaminoglycans in cancer. Nat. Rev. Cancer 2, 521–528 (2002)

    Article  PubMed  CAS  Google Scholar 

  7. Parish, C.R.: The role of heparan sulphate in inflammation. Nat. Rev. Immunol. 6, 633–643 (2006)

    Article  PubMed  CAS  Google Scholar 

  8. Liu, J., Thorp, S.C.: Cell surface heparan sulfate and its roles in assisting viral infections. Med. Res. Rev. 22, 1–25 (2002)

    Article  PubMed  Google Scholar 

  9. Capila, I., Linhardt, R.J.: Heparin-protein interactions. Angew. Chem. Int. Ed. 41, 391–412 (2002)

    Article  Google Scholar 

  10. Coombe, D.R., Kett, W.C.: Heparan sulfate-protein interactions: therapeutic potential through structure-function insights. Cell. Mol. Life Sci. 62, 410–424 (2005)

    Article  PubMed  CAS  Google Scholar 

  11. Raman, R., Sasisekharan, V., Sasisekharan, R.: Structural insights into biological roles of protein-glycosaminoglycan interactions. Chem. Biol. 12, 267–277 (2005)

    Article  PubMed  CAS  Google Scholar 

  12. Ferro, V., Dredge, K., Liu, L., Hammond, E., Bytheway, I., Li, C., Johnstone, K., Karoli, T., Davis, K., Copeman, E., Gautam, A.: PI-88 and novel heparan sulfate mimetics inhibit angiogenesis. Semin. Thromb. Hemost. 33, 557–568 (2007)

    Article  PubMed  CAS  Google Scholar 

  13. Presta, M., Leali, D., Stabile, H., Ronca, R., Camozzi, M., Coco, L., Moroni, E., Liekens, S., Rusnati, M.: Heparin derivatives as angiogenesis inhibitors. Curr. Pharm. Des. 9, 553–566 (2003)

    Article  PubMed  CAS  Google Scholar 

  14. Avci, F.Y., Karst, N.A., Linhardt, R.J.: Synthetic oligosaccharides as heparin-mimetics displaying anticoagulant properties. Curr. Pharm. Des. 9, 2323–2335 (2003)

    Article  PubMed  CAS  Google Scholar 

  15. Capila, I., VanderNoot, V.A., Mealy, T.R., Seaton, B.A., Linhardt, R.J.: Interaction of heparin with annexin V. FEBS Lett 446, 327–330 (1999)

    Article  PubMed  CAS  Google Scholar 

  16. Dong, J., Peters-Libeu, C.A., Weisgraber, K.H., Segelke, B.W., Rupp, B., Capila, I., Hernaiz, M.J., LeBrun, L.A., Linhardt, R.J.: Interaction of the N-terminal domain of apolipoprotein E4 with heparin. Biochemistry 40, 2826–2834 (2001)

    Article  PubMed  CAS  Google Scholar 

  17. Ibrahimi, O.A., Zhang, F., Hrstka, S.C., Mohammadi, M., Linhardt, R.J.: Kinetic model for FGF, FGFR, and proteoglycan signal transduction complex assembly. Biochemistry 43, 4724–4730 (2004)

    Article  PubMed  CAS  Google Scholar 

  18. Mach, H., Volkin, D.B., Burke, C.J., Middaugh, C.R., Linhardt, R.J., Fromm, J.R., Loganathan, D., Mattsson, L.: Nature of the interaction of heparin with acidic fibroblast growth factor. Biochemistry 32, 5480–5489 (1993)

    Article  PubMed  CAS  Google Scholar 

  19. Marks, R.M., Lu, H., Sundaresan, R., Toida, T., Suzuki, A., Imanari, T., Hernaiz, M.J., Linhardt, R.J.: Probing the interaction of dengue virus envelope protein with heparin: assessment of glycosaminoglycan-derived inhibitors. J. Med. Chem. 44, 2178–2187 (2001)

    Article  PubMed  CAS  Google Scholar 

  20. Ricard-Blum, S., Feraud, O., Lortat-Jacob, H., Rencurosi, A., Fukai, N., Dkhissi, F., Vittet, D., Imberty, A., Olsen, B.R., van der Rest, M.: Characterization of endostatin binding to heparin and heparan sulfate by surface plasmon resonance and molecular modeling: role of divalent cations. J. Biol. Chem. 279, 2927–2936 (2004)

    Article  PubMed  CAS  Google Scholar 

  21. Osmond, R.I., Kett, W.C., Skett, S.E., Coombe, D.R.: Protein-heparin interactions measured by BIAcore 2000 are affected by the method of heparin immobilization. Anal. Biochem. 310, 199–207 (2002)

    Article  PubMed  CAS  Google Scholar 

  22. Zhang, F., Fath, M., Marks, R., Linhardt, R.J.: A highly stable covalent conjugated heparin biochip for heparin-protein interaction studies. Anal. Biochem. 304, 271–273 (2002)

    Article  PubMed  CAS  Google Scholar 

  23. Cochran, S., Li, C., Fairweather, J.K., Kett, W.C., Coombe, D.R., Ferro, V.: Probing the interactions of phosphosulfomannans with angiogenic growth factors by surface plasmon resonance. J. Med. Chem. 46, 4601–4608 (2003)

    Article  PubMed  CAS  Google Scholar 

  24. Bytheway, I., Cochran, S.: Validation of molecular docking calculations involving FGF-1 and FGF-2. J. Med. Chem. 47, 1683–1693 (2004)

    Article  PubMed  CAS  Google Scholar 

  25. Cochran, S., Li, C.P., Bytheway, I.: An experimental and molecular-modeling study of the binding of linked sulfated tetracyclitols to FGF-1 and FGF-2. ChemBioChem 6, 1882–1890 (2005)

    Article  PubMed  CAS  Google Scholar 

  26. Karoli, T., Liu, L., Fairweather, J.K., Hammond, E., Li, C.P., Cochran, S., Bergefall, K., Trybala, E., Addison, R.S., Ferro, V.: Synthesis, biological activity, and preliminary pharmacokinetic evaluation of analogues of a phosphosulfomannan angiogenesis inhibitor (PI-88). J. Med. Chem. 48, 8229–8236 (2005)

    Article  PubMed  CAS  Google Scholar 

  27. Liu, L., Bytheway, I., Karoli, T., Fairweather, J.K., Cochran, S., Li, C., Ferro, V.: Design, synthesis, FGF-1 binding, and molecular modeling studies of conformationally flexible heparin mimetic disaccharides. Bioorg. Med. Chem. Lett. 18, 344–349 (2008)

    Article  PubMed  CAS  Google Scholar 

  28. Liu, L., Li, C.P., Cochran, S., Ferro, V.: Application of the four-component Ugi condensation for the preparation of sulfated glycoconjugate libraries. Bioorg. Med. Chem. Lett. 14, 2221–2226 (2004)

    Article  PubMed  CAS  Google Scholar 

  29. Satoh, A., Miwa, H.E., Kojima, K., Hirabayashi, J., Matsumoto, I.: Ligand-binding properties of annexin from Caenorhabditis elegans (annexin XVI, Nex-1). J. Biochem. 128, 377–381 (2000)

    PubMed  CAS  Google Scholar 

  30. Kamei, K., Wu, X., Xu, X., Minami, K., Huy, N.T., Takano, R., Kato, H., Hara, S.: The analysis of heparin-protein interactions using evanescent wave biosensor with regioselectively desulfated heparins as the ligands. Anal. Biochem. 295, 203–213 (2001)

    Article  PubMed  CAS  Google Scholar 

  31. Karlsson, R.: Real-time competitive kinetic analysis of interactions between low-molecular-weight ligands in solution and surface-immobilized receptors. Anal. Biochem. 221, 142–151 (1994)

    Article  PubMed  CAS  Google Scholar 

  32. Karlsson, R., Roos, H., Fägerstam, L., Persson, B.: Kinetic and concentration analysis using BIA technology. Methods: A Companion to Methods Enzymol. 6, 99–110 (1994)

    Article  CAS  Google Scholar 

  33. Kett, W.C., Osmond, R.I., Moe, L., Skett, S.E., Kinnear, B.F., Coombe, D.R.: Avidin is a heparin-binding protein. Affinity, specificity and structural analysis. Biochim. Biophys. Acta 1620, 225–234 (2003)

    PubMed  CAS  Google Scholar 

  34. Gemma, E., Meyer, O., Uhrín, D., Hulme, A.N.: Enabling methodology for the end functionalisation of glycosaminoglycan oligosaccharides. Mol. BioSystems 4, 481–495 (2008)

    Article  CAS  Google Scholar 

  35. Satoh, A., Matsumoto, I.: Analysis of interaction between lectin and carbohydrate by surface plasmon resonance. Anal. Biochem. 275, 268–270 (1999)

    Article  PubMed  CAS  Google Scholar 

  36. Lozano, R.M., Jimenez, M., Santoro, J., Rico, M., Gimenez-Gallego, G.: Solution structure of acidic fibroblast growth factor bound to 1,3, 6- naphthalenetrisulfonate: a minimal model for the anti-tumoral action of suramins and suradistas. J. Mol. Biol. 281, 899–915 (1998)

    Article  PubMed  CAS  Google Scholar 

  37. Volkin, D.B., Verticelli, A.M., Marfia, K.E., Burke, C.J., Mach, H., Middaugh, C.R.: Sucralfate and soluble sucrose octasulfate bind and stabilize acidic fibroblast growth factor. Biochim. Biophys. Acta 1203, 18–26 (1993)

    PubMed  CAS  Google Scholar 

  38. Nieba, L., Krebber, A., Pluckthun, A.: Competition BIAcore for measuring true affinities: large differences from values determined from binding kinetics. Anal. Biochem. 234, 155–165 (1996)

    Article  PubMed  CAS  Google Scholar 

  39. Goodger, S.J., Robinson, C.J., Murphy, K.J., Gasiunas, N., Harmer, N.J., Blundell, T.L., Pye, D.A., Gallagher, J.T.: Evidence that heparin saccharides promote FGF2 mitogenesis through two distinct mechanisms. J. Biol. Chem. 283, 13001–13008 (2008)

    Article  PubMed  CAS  Google Scholar 

  40. Robinson, C.J., Harmer, N.J., Goodger, S.J., Blundell, T.L., Gallagher, J.T.: Cooperative dimerization of fibroblast growth factor 1 (FGF1) upon a single heparin saccharide may drive the formation of 2:2:1 FGF1.FGFR2c.heparin ternary complexes. J. Biol. Chem. 280, 42274–42282 (2005)

    Article  PubMed  CAS  Google Scholar 

  41. Spivak-Kroizman, T., Lemmon, M.A., Dikic, I., Ladbury, J.E., Pinchasi, D., Huang, J., Jaye, M., Crumley, G., Schlessinger, J., Lax, I.: Heparin-induced oligomerization of FGF molecules is responsible for FGF receptor dimerization, activation, and cell proliferation. Cell 79, 1015–1024 (1994)

    Article  PubMed  CAS  Google Scholar 

  42. Li, L.Y., Seddon, A.P.: Fluorospectrometric analysis of heparin interaction with fibroblast growth factors. Growth Factors 11, 1–7 (1994)

    Article  PubMed  Google Scholar 

  43. Mach, H., Middaugh, C.R.: Probing the affinity of polyanions for acidic fibroblast growth factor by unfolding kinetics. Arch. Biochem. Biophys. 309, 36–42 (1994)

    Article  PubMed  CAS  Google Scholar 

  44. Francis, D.J., Parish, C.R., McGarry, M., Santiago, F.S., Lowe, H.C., Brown, K.J., Bingley, J.A., Hayward, I.P., Cowden, W.B., Campbell, J.H., Campbell, G.R., Chesterman, C.N., Khachigian, L.M.: Blockade of vascular smooth muscle cell proliferation and intimal thickening after balloon injury by the sulfated oligosaccharide PI-88: phosphomannopentaose sulfate directly binds FGF-2, blocks cellular signaling, and inhibits proliferation. Circ. Res. 92, e70–77 (2003)

    Article  PubMed  CAS  Google Scholar 

  45. Lee, M.K., Lander, A.D.: Analysis of affinity and structural selectivity in the binding of proteins to glycosaminoglycans: development of a sensitive electrophoretic approach. Proc. Natl. Acad. Sci. U. S. A. 88, 2768–2772 (1991)

    Article  PubMed  CAS  Google Scholar 

  46. Ashikari-Hada, S., Habuchi, H., Kariya, Y., Itoh, N., Reddi, A.H., Kimata, K.: Characterization of growth factor-binding structures in heparin/heparan sulfate using an octasaccharide library. J. Biol. Chem. 279, 12346–12354 (2004)

    Article  PubMed  CAS  Google Scholar 

  47. Krilleke, D., DeErkenez, A., Schubert, W., Giri, I., Robinson, G.S., Ng, Y.S., Shima, D.T.: Molecular mapping and functional characterization of the VEGF164 heparin-binding domain. J. Biol. Chem. 282, 28045–28056 (2007)

    Article  PubMed  CAS  Google Scholar 

  48. Krieger, E., Geretti, E., Brandner, B., Goger, B., Wells, T.N., Kungl, A.J.: A structural and dynamic model for the interaction of interleukin-8 and glycosaminoglycans: support from isothermal fluorescence titrations. Proteins 54, 768–775 (2004)

    Article  PubMed  CAS  Google Scholar 

  49. Dudek, A.Z., Pennell, C.A., Decker, T.D., Young, T.A., Key, N.S., Slungaard, A.: Platelet factor 4 binds to glycanated forms of thrombomodulin and to protein C. A potential mechanism for enhancing generation of activated protein C. J. Biol. Chem. 272, 31785–31792 (1997)

    Article  PubMed  CAS  Google Scholar 

  50. Mayo, K.H., Roongta, V., Ilyina, E., Milius, R., Barker, S., Quinlan, C., La Rosa, G., Daly, T.J.: NMR solution structure of the 32-kDa platelet factor 4 ELR-motif N-terminal chimera: a symmetric tetramer. Biochemistry 34, 11399–11409 (1995)

    Article  PubMed  CAS  Google Scholar 

  51. Kolset, S.O., Mann, D.M., Uhlin-Hansen, L., Winberg, J.O., Ruoslahti, E.: Serglycin-binding proteins in activated macrophages and platelets. J. Leukoc. Biol. 59, 545–554 (1996)

    PubMed  CAS  Google Scholar 

  52. Watton, J., Longstaff, C., Lane, D.A., Barrowcliffe, T.W.: Heparin binding affinity of normal and genetically modified antithrombin III measured using a monoclonal antibody to the heparin binding site of antithrombin III. Biochemistry 32, 7286–7293 (1993)

    Article  PubMed  CAS  Google Scholar 

  53. Conrad, H.E.: Antithrombin, the prototypic heparin-binding protein. In Heparin-Binding Proteins, pp. 203–238. Academic, San Diego (1998)

  54. Thompson, L.D., Pantoliano, M.W., Springer, B.A.: Energetic characterization of the basic fibroblast growth factor-heparin interaction: identification of the heparin binding domain. Biochemistry 33, 3831–3840 (1994)

    Article  PubMed  CAS  Google Scholar 

  55. Goger, B., Halden, Y., Rek, A., Mosl, R., Pye, D., Gallagher, J., Kungl, A.J.: Different affinities of glycosaminoglycan oligosaccharides for monomeric and dimeric interleukin-8: a model for chemokine regulation at inflammatory sites. Biochemistry 41, 1640–1646 (2002)

    Article  PubMed  CAS  Google Scholar 

  56. Witt, D.P., Lander, A.D.: Differential binding of chemokines to glycosaminoglycan subpopulations. Curr. Biol. 4, 394–400 (1994)

    Article  PubMed  CAS  Google Scholar 

  57. Forsten, K.E., Wang, N., Robinson, R.M., Nugent, M.A.: A simple assay for evaluating inhibitors of proteoglycan-ligand binding. Ann. Biomed. Eng. 28, 119–127 (2000)

    Article  PubMed  CAS  Google Scholar 

  58. Arakawa, T., Wen, J., Philo, J.S.: Densimetric determination of equilibrium binding of sucrose octasulfate with basic fibroblast growth factor. J. Protein Chem. 12, 689–693 (1993)

    Article  PubMed  CAS  Google Scholar 

  59. Blaszczyk, J., Coillie, E.V., Proost, P., Damme, J.V., Opdenakker, G., Bujacz, G.D., Wang, J.M., Ji, X.: Complete crystal structure of monocyte chemotactic protein-2, a CC chemokine that interacts with multiple receptors. Biochemistry 39, 14075–14081 (2000)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Mr. Rick Filonzi (Biacore AB, Australia) for his technical support, Ms. Anna Bezos and Prof. Chris Parish (John Curtin School of Medical Resarch, Australian National University) for useful discussions and Dr. A. Satoh (Ochanomizu University, Japan) for his technical advice on the immobilisation of heparin onto the CM5 sensor chip. We also thank Dr. Ian Bytheway (Progen) for useful discussions, critical reading of this manuscript, and the preparation of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vito Ferro.

Electronic supplementary material

Below is the link to the electronic supplementary material. Representative sensorgrams for each protein (FGF-1, FGF-2, VEGF, PF4, ATIII, MCP-2 and IL-8) and ligand (heparin, LMWH, PI-88, SOS and NTS) discussed in the text. Data from the negative control flow cells showing the level of non-specific binding are also provided.

ESM 1

(PDF 541KB).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cochran, S., Li, C.P. & Ferro, V. A surface plasmon resonance-based solution affinity assay for heparan sulfate-binding proteins. Glycoconj J 26, 577–587 (2009). https://doi.org/10.1007/s10719-008-9210-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-008-9210-0

Keywords

Navigation