Skip to main content

Advertisement

Log in

Glycosylation of human fetal mucins: a similar repertoire of O-glycans along the intestinal tract

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Intestinal mucins are very high molecular weight glycoproteins secreted by goblet cells lining the crypt and the surface of the colonic mucosa. Profound alterations of mucin O-glycans are observed in diseases such as cancer and inflammation, modifying the function of the cell and its antigenic and adhesive properties. Based on immunohistochemical studies, certain cancer- and inflammation- associated glycans have been defined as oncofetal antigens. However, little or no chemical analysis has allowed the structural elucidation of O-glycans expressed on human fetal mucins. In this paper, mucins were isolated from different regions of the normal human intestine (ileum, right, transverse and left colon) of eight fetuses with A, B or O blood group. After alkaline borohydride treatment, the released oligosaccharides were investigated by nanoESI Q-TOF MS/MS (electrospray ionization quadrupole time-of-flight tandem mass spectrometry). More than 117 different glycans were identified, mainly based on core 2 structures. Some core 1, 3 and 4 oligosaccharides were also found. Most of the structures were acidic with NeuAc residues mainly α2–6 linked to the N-acetylgalactosaminitol and sulphate residues 3-linked to galactose or 6-linked to GlcNAc. In contrast to adult human intestinal mucins, Sda/Cad determinants were not expressed on fetal mucin O-glycans and the presence of an acidic gradient along the intestinal tract was not observed. Similar patterns of glycosylation were found in each part of the intestine and the level of expression of the major oligosaccharides was in the same order of magnitude. This study could help determining new oncofetal antigens, which can be exploited for the diagnosis or the treatment of intestinal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Thornton, D.J., Rousseau, K., McGuckin, M.A.: Structure and function of the polymeric mucins in airways mucus. Annu. Rev. Physiol. 70, 459–486 (2008). doi:10.1146/annurev.physiol.70.113006.100702

    Article  PubMed  CAS  Google Scholar 

  2. Linden, S.K., Sutton, P., Karlsson, N.G., Korolik, V., McGuckin, M.A.: Mucins in the mucosal barrier to infection. Nat. Mucosal Immunol. 1, 183–197 (2008). doi:10.1038/mi.2008.5

    Article  CAS  Google Scholar 

  3. Atuma, C., Strugala, V., Allen, A., Holm, L.: The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G922–G929 (2001)

    PubMed  CAS  Google Scholar 

  4. Hollingsworth, M.A., Swanson, B.J.: Mucins in cancer: protection and control of the cell surface. Nat. Rev. Cancer 4, 45–60 (2004). doi:10.1038/nrc1251

    Article  PubMed  CAS  Google Scholar 

  5. Chang, S.K., Dohrman, A.F., Basbaum, C.B., Ho, S.B., Tsuda, T., Toribara, N.W., et al.: Localization of mucin (MUC2 and MUC3) messenger RNA and peptide expression in human normal intestine and colon cancer. Gastroenterology 107, 28–36 (1994)

    PubMed  CAS  Google Scholar 

  6. Porchet, N., Nguyen, V.C., Dufosse, J., Audie, J.P., Guyonnet-Duperat, V., Gross, M.S., et al.: Molecular cloning and chromosomal localization of a novel human tracheo-bronchial mucin cDNA containing tandemly repeated sequences of 48 base pairs. Biochem. Biophys. Res. Commun. 175, 414–422 (1991). doi:10.1016/0006-291X(91)91580-6

    Article  PubMed  CAS  Google Scholar 

  7. Audie, J.P., Janin, A., Porchet, N., Copin, C., Gosselin, B., Aubert, J.P.: Expression of human mucin genes in respiratory, digestive, and reproductive tracts ascertained by in situ hybridization. J. Histochem. Cytochem. 41, 1479–1485 (1993)

    PubMed  CAS  Google Scholar 

  8. De Bolos, C., Garrido, M., Real, F.X.: MUC6 apomucin shows a distinct normal tissue distribution that correlates with Lewis antigen expression in the human stomach. Gastroenterology 109, 723–734 (1995). doi:10.1016/0016-5085(95)90379-8

    Article  PubMed  Google Scholar 

  9. Podolsky, D.K.: Oligosaccharide structures of human colonic mucin. J. Biol. Chem. 260, 8262–8271 (1985)

    PubMed  CAS  Google Scholar 

  10. Podolsky, D.K.: Oligosaccharide structures of isolated human colonic mucin species. J. Biol. Chem. 260, 15510–15515 (1985)

    PubMed  CAS  Google Scholar 

  11. Capon, C., Maes, E., Michalski, J.C., Leffler, H., Kim, Y.S.: Sda-antigen-like structures carried on core 3 are prominent features of glycans from the mucin of normal human descending colon. Biochem. J. 358, 657–664 (2001)

    PubMed  CAS  Google Scholar 

  12. Robbe, C., Capon, C., Maes, E., Rousset, M., Zweibaum, A., Zanetta, J.P., et al.: Evidence of regio-specific glycosylation in human intestinal mucins. J. Biol. Chem. 278, 46337–46348 (2003). doi:10.1074/jbc.M302529200

    Article  PubMed  CAS  Google Scholar 

  13. Robbe, C., Capon, C., Coddeville, B., Michalski, J.C.: Structural diversity and specific distribution of O-glycans in normal human mucins. Biochem. J. 384, 307–316 (2004)

    Article  PubMed  CAS  Google Scholar 

  14. Stauffer, A., Lallemand, A., Gaillard, D.: Mucin histochemistry of the digestive tract in the human fetus. Gastroenterol. Clin. Biol. 14, 561–566 (1990)

    PubMed  CAS  Google Scholar 

  15. Hounsell, E.F., Lawson, A.M., Feeney, J., Gooi, H.C., Pickering, N.J., Stoll, M.S., et al.: Structural analysis of the O-glycosidically linked core-region oligosaccharides of human meconium glycoproteins which express oncofoetal antigens. Eur. J. Biochem. 148, 367–377 (1985). doi:10.1111/j.1432-1033.1985.tb08848.x

    Article  PubMed  CAS  Google Scholar 

  16. Feeney, J., Frenkiel, T.A., Hounsell, E.F.: Complete 1H-NMR assignments for two core-region oligosaccharides of human meconium glycoproteins, using 1D and 2D methods at 500 MHZ. Carbohydr. Res. 152, 63–72 (1986). doi:10.1016/S0008-6215(00)90287-8

    Article  PubMed  CAS  Google Scholar 

  17. Capon, C., Cache, P., Leroy, Y., Strecker, G., Montreuil, J., Fournet, B.: Isolation of the major O-glycosidically linked oligosaccharides obtained by alkaline borohydride degradation of human meconium glycoproteins. J. Chromatogr. A 425, 35–45 (1988). doi:10.1016/0378-4347(88)80004-5

    Article  CAS  Google Scholar 

  18. Capon, C., Leroy, Y., Wieruszeski, J.M., Ricart, G., Strecker, G., Montreuil, J., et al.: Structures of O-glycosidically linked oligosaccharides isolated from human meconium glycoproteins. Eur. J. Biochem. 182, 139–152 (1989). doi:10.1111/j.1432-1033.1989.tb14810.x

    Article  PubMed  CAS  Google Scholar 

  19. Byrd, J.C., Bresalier, R.S.: Mucins and mucin binding proteins in colorectal cancer. Cancer Metastasis Rev. 23, 77–99 (2004). doi:10.1023/A:1025815113599

    Article  PubMed  CAS  Google Scholar 

  20. Zweibaum, A., Oriol, R., Dausset, J., Marcelli-Barge, A., Ropartz, C., Lanset, S.: Definition in man of a polymorphic system of the normal colonic secretions. Tissue Antigens 6, 121–128 (1975)

    PubMed  CAS  Google Scholar 

  21. Lesuffleur, T., Roche, F., Hill, A.S., Lacasa, M., Fox, M., Swallow, D.M., et al.: Characterization of a mucin cDNA clone isolated from HT-29 mucus-secreting cells. The 3′ end of MUC5AC? J. Biol. Chem. 270, 13665–13673 (1995). doi:10.1074/jbc.270.23.13665

    Article  PubMed  CAS  Google Scholar 

  22. Klein, A., Diaz, S., Ferreira, I., Lamblin, G., Manzi, A.E.: New sialic acids from biological sources identified by a comprehensive and sensitive approach: liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) of SIA quinoxalinones. Glycobiology 7, 421–432 (1997). doi:10.1093/glycob/7.3.421

    Article  PubMed  CAS  Google Scholar 

  23. Carlson, D.M.: Structures and immunochemical properties of oligosaccharides isolated from pig submaxillary mucins. J. Biol. Chem. 243, 616–626 (1968)

    PubMed  CAS  Google Scholar 

  24. Kamerling, J.P., Gerwig, G.J., Vliegenthart, J.F., Clamp, J.R.: Characterization by gas–liquid chromatography-mass spectrometry and proton-magnetic-resonance spectroscopy of pertrimethylsilyl methyl glycosides obtained in the methanolysis of glycoproteins and glycopeptides. Biochem. J. 151, 491–495 (1975)

    PubMed  CAS  Google Scholar 

  25. Montreuil, J., Bouquelet, S., Debray, H., Fournet, B., Spik, G., Strecker, G.: In: Chaplin, M.F., Kennedy, J.F. (eds.) Carbohydrate Analysis: A Practical Approach, pp. 143–204. IRL Press, Oxford (1986)

    Google Scholar 

  26. Buisine, M.P., Devisme, L., Savidge, T.C., Gespach, C., Gosselin, B., Porchet, N., Aubert, J.P.: Mucin gene expression in human embryonic and fetal intestine. Gut 43, 519–524 (1998)

    Article  PubMed  CAS  Google Scholar 

  27. Hara, S., Yamaguchi, M., Takemori, Y., Furuhata, K., Ogura, H., Nakamura, M.: Determination of mono-O-acetylated N-acetylneuraminic acids in human and rat sera by fluorometric high-performance liquid chromatography. Anal. Biochem. 179, 162–166 (1989). doi:10.1016/0003-2697(89)90218-2

    Article  PubMed  CAS  Google Scholar 

  28. Bardor, M., Nguyen, D.H., Diaz, S., Varki, A.: Mechanism of uptake and incorporation of the non-human sialic acid N-glycolylneuraminic acid into human cells. J. Biol. Chem. 280, 4228–4237 (2005). doi:10.1074/jbc.M412040200

    Article  PubMed  CAS  Google Scholar 

  29. Robbe, C., Capon, C., Coddeville, B., Michalski, J.C.: Diagnostic ions for the rapid analysis by nano-electrospray ionization quadrupole time-of-flight mass spectrometry of O-glycans from human mucins. Rapid Commun. Mass Spectrom. 18, 412–420 (2004). doi:10.1002/rcm.1352

    Article  PubMed  CAS  Google Scholar 

  30. Domon, B., Costello, C.E.: A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj. J. 5, 397–409 (1988). doi:10.1007/BF01049915

    Article  CAS  Google Scholar 

  31. Karlsson, N.G., Karlsson, H., Hansson, G.C.: Sulphated mucin oligosaccharides from porcine small intestine analysed by four-sector tandem mass spectrometry. J. Mass Spectrom. 31, 560–572 (1996). doi:10.1002/(SICI)1096-9888(199605)31:5<560::AID-JMS331>3.0.CO;2-0

    Article  PubMed  CAS  Google Scholar 

  32. Koerner, T.A.W., Prestegard, J.H., Yu, R.K.: Oligosaccharide structure by two-dimensional proton nuclear magnetic resonance spectroscopy. Methods Enzymol. 138, 38–59 (1987). doi:10.1016/0076-6879(87)38006-1

    Article  PubMed  CAS  Google Scholar 

  33. Kamerling, J.P., Vliegenthart, J.F.G.: In: Berliner, L., Reben, J. (eds.) Biological Magnetic Resonance, vol. 10, pp. 1–287. Plenum, New York (1992)

    Google Scholar 

  34. Sweet-DB: http://www.dkfz.de/spec/glycosciences.de/sweetdb/

  35. Dua, V.K., Rao, B.N.N., Wu, S.S., Dube, V.E., Bush, C.A.: Characterization of the oligosaccharide alditols from ovarian cyst mucin glycoproteins of blood group A using high pressure liquid chromatography (HPLC) and high field 1H NMR spectroscopy. J. Biol. Chem. 261, 1599–1608 (1986)

    PubMed  CAS  Google Scholar 

  36. Thomsson, K.A., Prakobphol, A., Fisher, S.J., Leffler, H., Reddy, M.S., Levine, M.J., et al.: The O-glycans of the salivary mucin MG1 (MUC5B) are large and diverse and differ from the MG2 (MUC7) mucin oligosaccharides. Glycobiology 12, 1–14 (2002). doi:10.1093/glycob/12.1.1

    Article  PubMed  CAS  Google Scholar 

  37. Andersch-Björkman, Y., Thomsson, K.A., Holmén Larsson, J.M., Ekerhovd, E., Hansson, G.C.: Large-scale identification of proteins, mucins and their O-glycosylation in the endocervical mucus during the menstrual cycle. Mol. Cell. Proteomics 6, 708–716 (2007). doi:10.1074/mcp.M600439-MCP200

    Article  PubMed  CAS  Google Scholar 

  38. Gill, S.R., Pop, M., DeBoy, R.T., Eckburg, P.B., Turnbaugh, P.J., Samuel, B.S., et al.: Metagenomic analysis of the human distal gut microbiome. Science 312, 1355–1359 (2006). doi:10.1126/science.1124234

    Article  PubMed  CAS  Google Scholar 

  39. Kurosaka, A., Nakajima, H., Funakoshi, I., Matsuyama, M., Nagayo, T., Yamashina, I.: Structures of the major oligosaccharides from a human rectal adenocarcinoma glycoprotein. J. Biol. Chem. 258, 11594–11598 (1983)

    PubMed  CAS  Google Scholar 

  40. Jentoft, N.: Why are proteins O-glycosylated? Trends Biochem. Sci. 15, 291–294 (1990). doi:10.1016/0968-0004(90)90014-3

    Article  PubMed  CAS  Google Scholar 

  41. Van der Reijden, W.A., Veerman, E.C.I., Nieuw Amerongen, A.V.: Shear rate dependent viscoelastic behavior of human glandular salivas. Biorheology 30, 141–152 (1993)

    PubMed  Google Scholar 

  42. Corfield, A.P.: The glycobiology of mucins in the human gastrointestinal tract. In: Sansom, C.A.D.O. (ed), Glycobiology, pp. 248–260. Scion, Bloxham, UK (2007)

  43. Corfield, A.P., Wagner, S.A., Clamp, J.R., Kriaris, M.S., Hoskins, L.C.: Mucin degradation in the human colon: production of sialidase, sialate O-acetylesterase, N-acetylneuraminate lyase, arylesterase, and glycosulfatase activities by strains of fecal bacteria. Infect. Immun. 60, 3971–3978 (1992)

    PubMed  CAS  Google Scholar 

  44. Chambers, J.A., Hollingsworth, M.A., Trezise, A.E., Harris, A.: Developmental expression of mucin genes MUC1 and MUC2. J. Cell Sci. 107, 413–424 (1994)

    PubMed  CAS  Google Scholar 

  45. Bartman, A.E., Sanderson, S.J., Ewing, S.L., Niehans, G.A., Wiehr, C.L., Evans, M.K., et al.: Aberrant expression of MUC5AC and MUC6 gastric mucin genes in colorectal polyps. Int. J. Cancer 80, 210–218 (1999). doi:10.1002/(SICI)1097-0215(19990118)80:2<210::AID-IJC9>3.0.CO;2-U

    Article  PubMed  CAS  Google Scholar 

  46. Van Klinken, B.J., Dekker, J., Van Gool, S.A., Van Marle, J., Büller, H.A., Einerhand, A.W.: MUC5B is the prominent mucin in human gallbladder and is also expressed in a subset of colonic goblet cells. Am. J. Physiol. 274, G871–G878 (1998)

    PubMed  Google Scholar 

  47. Angata, T., Varki, A.: Chemical diversity in the sialic acids and related keto acids. An evolutionary perspective. Chem. Rev. 102, 439–469 (2002). doi:10.1021/cr000407m

    Article  PubMed  CAS  Google Scholar 

  48. Howard, R.J., Reuter, G., Barnwell, J.W., Schauer, R.: Sialoglycoproteins and sialic acids of Plasmodium knowlesi schizont-infected erythrocytes and normal rhesus monkey erythrocytes. Parasitology 92, 527–543 (1986)

    Article  PubMed  CAS  Google Scholar 

  49. Muchmore, E.A., Diaz, S., Varki, A.: A structural difference between the cell surfaces of humans and the great apes. Am. J. Phys. Anthropol. 107, 187–198 (1998). doi:10.1002/(SICI)1096-8644(199810)107:2<187::AID-AJPA5>3.0.CO;2-S

    Article  PubMed  CAS  Google Scholar 

  50. Traving, C., Schauer, R.: Structure, function and metabolism of sialic acids. Cell. Mol. Life Sci. 54, 1330–1349 (1998). doi:10.1007/s000180050258

    Article  PubMed  CAS  Google Scholar 

  51. Chou, H.H., Takematsu, H., Diaz, S., Iber, J., Nickerson, E., Wright, K.L., et al.: A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. Proc. Natl. Acad. Sci. USA 95, 11751–11756 (1998). doi:10.1073/pnas.95.20.11751

    Article  PubMed  CAS  Google Scholar 

  52. Irie, A., Koyama, S., Kozutsumi, Y., Kawasaki, T., Suzuki, A.: The molecular basis for the absence of N-glycolylneuraminic acid in humans. J. Biol. Chem. 273, 15866–15871 (1998). doi:10.1074/jbc.273.25.15866

    Article  PubMed  CAS  Google Scholar 

  53. Tangvoranuntakul, P., Gagneux, P., Diaz, S., Bardor, M., Varki, N., Varki, A., et al.: Human uptake and incorporation of an immunogenic nonhuman dietary sialic acid. Proc. Natl. Acad. Sci. U.S.A. 100, 12045–12050 (2003). doi:10.1073/pnas.2131556100

    Article  PubMed  CAS  Google Scholar 

  54. Szulman, A.E.: The histological distribution of the blood group substances in man as disclosed by immunofluorescence. III. The A, B, and H antigens in embryos and fetuses from 18 mm in length. J. Exp. Med. 119, 503–515 (1964). doi:10.1084/jem.119.4.503

    Article  PubMed  CAS  Google Scholar 

  55. Yuan, M., Itzkowitz, S.H., Palekar, A., Shamsuddin, A.M., Phelps, P.C., Trump, B.F., et al.: Distribution of blood group antigens A, B, H, Lewis a, and Lewis b in human normal, fetal, and malignant colonic tissue. Cancer Res. 45, 4499–4511 (1985)

    PubMed  CAS  Google Scholar 

  56. Dall’Olio, F., Malagolini, N., Di Stefano, G., Ciambella, M., Serafini-Cessi, F.: Postnatal development of rat colon epithelial cells is associated with changes in the expression of the beta 1,4-N-acetylgalactosaminyltransferase involved in the synthesis of Sda antigen of alpha 2,6-sialyltransferase activity towards N-acetyl-lactosamine. Biochem. J. 270, 519–524 (1990)

    PubMed  Google Scholar 

  57. Malagolini, N., Santini, D., Chiricolo, M., Dall’Olio, F.: Biosynthesis and expression of the Sda and sialyl Lewis x antigens in normal and cancer colon. Glycobiology 17, 688–697 (2007). doi:10.1093/glycob/cwm040

    Article  PubMed  CAS  Google Scholar 

  58. Kawamura, Y.I., Kawashima, R., Fukunaga, R., Hirai, K., Toyama-Sorimachi, N., Tokuhara, M., et al.: Introduction of Sd(a) carbohydrate antigen in gastrointestinal cancer cells eliminates selectin ligands and inhibits metastasis. Cancer Res. 65, 6220–6227 (2005). doi:10.1158/0008-5472.CAN-05-0639

    Article  PubMed  CAS  Google Scholar 

  59. Malagolini, N., Dall’Ollio, F., Serafini-Cessi, F.: UDP-GalNAc: NeuAc alpha 2,3Gal beta-R (GalNAc to Gal) beta 1,4-N-acetylgalactosaminyltransferase responsible for the Sda specificity in human colon carcinoma CaCo-2 cell line. Biochem. Biophys. Res. Commun. 180, 681–686 (1991). doi:10.1016/S0006-291X(05)81119-2

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the gift of fetal intestinal mucins collected by Dr. A. Zweibaum and the gift of polyclonal antibodies (LUM2-3, LUM5B-3, LUM5-1 and LUM6-1) by Dr Ingemar Carlstedt. This investigation was supported in part by the CNRS (Unité Mixte de Recherche CNRS/USTL 8576; Director: Dr. Jean-Claude Michalski) and by the Ministère de la Recherche et de l’Enseignement Supérieur. The Mass Spectroscopy facility used in this study was funded by the European Community (FEDER), the Région Nord-Pas de Calais (France), the CNRS and the Université des Sciences et Technologies de Lille.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Robbe-Masselot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robbe-Masselot, C., Maes, E., Rousset, M. et al. Glycosylation of human fetal mucins: a similar repertoire of O-glycans along the intestinal tract. Glycoconj J 26, 397–413 (2009). https://doi.org/10.1007/s10719-008-9186-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-008-9186-9

Keywords

Navigation