Skip to main content

Advertisement

Log in

Neo-glycopeptides: the importance of sugar core conformation in oxime-linked glycoprobes for interaction studies

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Carbohydrate binding proteins, such as lectins, are crucial in numerous biological recognition processes. While binding may be mediated by a single monosaccharide, several lectins have shown exquisite epimer and linkage recognition indicating that a larger structure is essential for optimal interaction. Several approaches have been described for their detailed study, including lectinosorbent assays, microarrays and surface plasmon resonance (SPR). Most of these approaches ignore that the aglycon-bound monosaccharide is often in a non-natural conformation that affects the occurring binding event. In this paper we demonstrate that oxime-bound glycans, employed in such approaches, occur predominantly in the open form (~70%). Through the use of a secondary amine, the aglycon-bound monosaccharide in the resulting neo-glycopeptide probe is forced into the ring-form. Resulting structures were analyzed by means of nuclear magnetic resonance and differential derivatization experiments. The impact of ring closure was further demonstrated through interaction studies using SPR and various lectins with distinct binding specificities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Varki, A.: Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3, 97–130 (1993)

    Article  PubMed  CAS  Google Scholar 

  2. Velasquez, J.G., Canovas, S., Barajas, P., Marcos, J., Jimenez-Movilla, M., Gutiérrez Gallego, R., Ballesta, J., Aviles, M., Coy, P.: Role of sialic acid in bovine sperm-zona pellucida binding. Mol. Reprod. Dev 74, 617–628 (2007)

    Article  PubMed  CAS  Google Scholar 

  3. Crocker, P.R., Paulson, J.C., Varki, A.: Siglecs and their roles in the immune system. Nat. Rev. Immunol 7, 255–266 (2007)

    Article  PubMed  CAS  Google Scholar 

  4. Ji, X., Chen, Y., Faro, J., Gewurz, H., Bremer, J., Spear, G.T.: Interaction of human immunodeficiency virus (HIV) glycans with lectins of the human immune system. Curr. Protein Pept. Sci 7, 317–324 (2006)

    Article  PubMed  CAS  Google Scholar 

  5. Califice, S., Castronovo, V., Van Den, B.F.: Galectin-3 and cancer (review). Int. J. Oncol 25, 983–992 (2004)

    PubMed  CAS  Google Scholar 

  6. Hirabayashi, J.: Lectin-based structural glycomics: glycoproteomics and glycan profiling. Glycoconj. J 21, 35–40 (2004)

    Article  PubMed  Google Scholar 

  7. Turner, G.A.: N-glycosylation of serum proteins in disease and its investigation using lectins. Clin. Chim. Acta 208, 149–171 (1992)

    Article  PubMed  CAS  Google Scholar 

  8. Seeberger, P.H., Werz, D.B.: Synthesis and medical applications of oligosaccharides. Nature 446, 1046–1051 (2007)

    Article  PubMed  CAS  Google Scholar 

  9. Watkins, W.M.: Biochemistry and Genetics of the ABO, Lewis, and P blood group systems. Adv. Hum. Genet 10, 1–85 (1980)

    PubMed  CAS  Google Scholar 

  10. Wu, A.M., Wu, J.H., Liu, J.H., Singh, T.: Recognition profile of Bauhinia purpurea agglutinin (BPA). Life Sci 74, 1763–1779 (2004)

    Article  PubMed  CAS  Google Scholar 

  11. Feizi, T., Chai, W.: Oligosaccharide microarrays to decipher the glyco code. Nat. Rev. Mol. Cell Biol 5, 582–588 (2004)

    Article  PubMed  CAS  Google Scholar 

  12. Shin, I., Park, S., Lee, M.R.: Carbohydrate microarrays: an advanced technology for functional studies of glycans. Chemistry 11, 2894–2901 (2005)

    Article  PubMed  CAS  Google Scholar 

  13. Zhou, X., Zhou, J.: Oligosaccharide microarrays fabricated on aminooxyacetyl functionalized glass surface for characterization of carbohydrate-protein interaction. Biosens. Bioelectron 21, 1451–1458 (2006)

    Article  PubMed  CAS  Google Scholar 

  14. Lee, M.R., Shin, I.: Facile preparation of carbohydrate microarrays by site-specific, covalent immobilization of unmodified carbohydrates on hydrazide-coated glass slides. Org. Lett 7, 4269–4272 (2005)

    Article  PubMed  CAS  Google Scholar 

  15. O'Shannessy, D.J., Wilchek, M.: Immobilization of glycoconjugates by their oligosaccharides: use of hydrazide-derivatized matrices. Anal. Biochem 191, 1–8 (1990)

    Article  PubMed  Google Scholar 

  16. Shinohara, Y., Kim, F., Shimizu, M., Goto, M., Tosu, M., Hasegawa, Y.: Kinetic measurement of the interaction between an oligosaccharide and lectins by a biosensor based on surface plasmon resonance. Eur. J. Biochem 223, 189–194 (1994)

    Article  PubMed  CAS  Google Scholar 

  17. Vila-Perello, M., Gutiérrez-Gallego, R. Andreu, D.: A simple approach to well-defined sugar-coated surfaces for interaction studies. Chembiochem 6, 1831–1838 (2005)

    Article  PubMed  CAS  Google Scholar 

  18. Langenhan, J.M., Thorson, J.S.: Recent carbohydrate-based chemoselective ligation applications. Current Organic Synthesis 2, 59–81 (2005)

    Article  CAS  Google Scholar 

  19. Peri, F., Nicotra, F.: Chemoselective ligation in glycochemistry. Chem. Commun. (Camb.) 2004, 623–627 (2004)

    Article  Google Scholar 

  20. Jimenez-Castells, C., de la Torre, B.G., Gutiérrez Gallego, R., Andreu, D.: Optimized synthesis of aminooxy-peptides as glycoprobe precursors for surface-based sugar-protein interaction studies. Bioorg. Med. Chem. Lett 17, 5155–5158 (2007)

    Article  PubMed  CAS  Google Scholar 

  21. Peri, F., Dumy, P., Mutter, M.: Chemo- and stereoselective glycosylation of hydroxylamino derivatives: a versatile approach to glycoconjugates. Tetrahedron 54, 12269–12278 (1998)

    Article  CAS  Google Scholar 

  22. Kamerling, J.P.: Basic concepts and nomenclature recommendations in carbohydrate chemistry. In: Kamerling, J.P. (ed.) Comprehensive Glycoscience—From Chemistry to Systems Biology, pp. 1–37. Elsevier, Amsterdam (2007)

    Google Scholar 

  23. Cervigni, S.E., Dumy, P., Mutter, M.: Synthesis of glycopeptides and lipopeptides by chemoselective ligation. Angew. Chem., Int. Ed. Engl 35, 1230–1232 (1996)

    Article  CAS  Google Scholar 

  24. Guillaumie, F., Thomas, O.R.T., Jensen, K.J.: Immobilization of pectin fragments on solid supports: novel coupling by thiazolidine formation. Bioconjug. Chem 13, 285–294 (2002)

    Article  PubMed  CAS  Google Scholar 

  25. Hatanaka, Y., Kempin, U., Jong-Jip, P.: One-step synthesis of biotinyl photoprobes from unprotected carbohydrates. J. Org. Chem 65, 5639–5643 (2000)

    Article  PubMed  CAS  Google Scholar 

  26. Ramsay, S.L., Freeman, C., Grace, P.B., Redmond, J.W., MacLeod, J.K.: Mild tagging procedures for the structural analysis of glycans. Carbohydr. Res 333, 59–71 (2001)

    Article  PubMed  CAS  Google Scholar 

  27. Zhao, Y., Kent, S.B., Chait, B.T.: Rapid, sensitive structure analysis of oligosaccharides. Proc. Natl. Acad. Sci. U. S. A 94, 1629–1633 (1997)

    Article  PubMed  CAS  Google Scholar 

  28. Wüthrich, K.: N.M.R. of Proteins and Nucleic Acids. Wiley, New York (1986)

    Google Scholar 

  29. Andreana, P.R., Xie, W., Cheng, H.N., Qiao, L., Murphy, D.J., Gu, Q.M., Wang, P.G.: In situ preparation of beta-D-1-O-hydroxylamino carbohydrate polymers mediated by galactose oxidase. Org. Lett 4, 1863–1866 (2002)

    Article  PubMed  CAS  Google Scholar 

  30. Vliegenthart, J.F.G.: High-resolution, 1H-nuclear magnetic resonance spectroscopy as a tool in the structural analysis of carbohydrates related to glycoproteins. Adv. Carbohydr. Chem. Biochem 41, 209–374 (1983)

    Article  CAS  Google Scholar 

  31. Carrasco, M.R., Nguyen, M.J., Burnell, D.R., MacLaren, M.D., Hengel, S.M.: Synthesis of neoglycopeptides by chemoselective reaction of carbohydrates with peptides containing a novel N’-methyl-aminooxy amino acid. Tetrahedron Lett 43, 5727–5729 (2002)

    Article  CAS  Google Scholar 

  32. Carrasco, M.R., Silva, O., Rawls, K.A., Sweeney, M.S., Lombardo, A.A.: Chemoselective alkylation of N-alkylaminooxy-containing peptides. Org. Lett 8, 3529–3532 (2006)

    Article  PubMed  CAS  Google Scholar 

  33. Bure, C., Lelievre, D., Delmas, A.: Identification of by-products from an orthogonal peptide ligation by oxime bonds using mass spectrometry and tandem mass spectrometry. Rapid Commun. Mass Spectrom 14, 2158–2164 (2000)

    Article  PubMed  CAS  Google Scholar 

  34. Wu, J.H., Singh, T., Herp, A., Wu, A.M.: Carbohydrate recognition factors of the lectin domains present in the Ricinus communis toxic protein (ricin). Biochimie 88, 201–217 (2006)

    Article  PubMed  CAS  Google Scholar 

  35. Nagata, Y., Burger, M.M.: Wheat germ agglutinin. Molecular characteristics and specificity for sugar binding. J. Biol. Chem 249, 3116–3122 (1974)

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministry of Education and Science (project BIO2005-07592-CO2-02 to D.A.; predoctoral fellowship BES-2006-12879 to C.J.C.) and by Generalitat de Catalunya (SGR 00494). The authors acknowledge Dr. M.A. Molins from the NMR unit of the University of Barcelona for the assistance with the NMR experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Gutiérrez-Gallego.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiménez-Castells, C., de la Torre, B.G., Andreu, D. et al. Neo-glycopeptides: the importance of sugar core conformation in oxime-linked glycoprobes for interaction studies. Glycoconj J 25, 879–887 (2008). https://doi.org/10.1007/s10719-008-9150-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-008-9150-8

Keywords

Navigation