Skip to main content

Advertisement

Log in

Recombinant human lactoferrin expressed in glycoengineered Pichia pastoris: effect of terminal N-acetylneuraminic acid on in vitro secondary humoral immune response

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Traditional production of therapeutic glycoproteins relies on mammalian cell culture technology. Glycoproteins produced by mammalian cells invariably display N-glycan heterogeneity resulting in a mixture of glycoforms the composition of which varies from production batch to production batch. However, extent and type of N-glycosylation has a profound impact on the therapeutic properties of many commercially relevant therapeutic proteins making control of N-glycosylation an emerging field of high importance. We have employed a combinatorial library approach to generate glycoengineered Pichia pastoris strains capable of displaying defined human-like N-linked glycans at high uniformity. The availability of these strains allows us to elucidate the relationship between specific N-linked glycans and the function of glycoproteins. The aim of this study was to utilize this novel technology platform and produce two human-like N-linked glycoforms of recombinant human lactoferrin (rhLF), sialylated and non-sialylated, and to evaluate the effects of terminal N-glycan structures on in vitro secondary humoral immune responses. Lactoferrin is considered an important first line defense protein involved in protection against various microbial infections. Here, it is established that glycoengineered P. pastoris strains are bioprocess compatible. Analytical protein and glycan data are presented to demonstrate the capability of glycoengineered P. pastoris to produce fully humanized, active and immunologically compatible rhLF. In addition, the biological activity of the rhLF glycoforms produced was tested in vitro revealing the importance of N-acetylneuraminic (sialic) acid as a terminal sugar in propagation of proper immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Man:

mannose

Gal:

galactose

GlcNAc:

N-acetylglucosamine

Sia:

sialic acid

hLF:

human lactoferrin

rhLF:

recombinant human lactoferrin

anti-hLF:

anti-human LF antibody

anti-HCP:

anti-host cell protein antibody

CV:

column volume

AFC:

antibody forming colonies

MALDI-TOF:

matrix-assisted laser desorption/ionization time of flight

MS/MS:

tandem mass spectrometry

References

  1. Artym, J., Zimecki, M., Kruzel, M.L.: Effect of lactoferrin on the methotrexate-induced suppression of the cellular and humoral immune response in mice. Anticancer Res. 24, 3831–3836 (2004)

    PubMed  CAS  Google Scholar 

  2. Baveye, S., Elass, E., Mazurier, J., Spik, G., Legrand, D.: Lactoferrin: a multifunctional glycoprotein involved in the modulation of the inflammatory process. Clin. Chem. Lab. Med. 37, 281–286 (1999)

    Article  PubMed  CAS  Google Scholar 

  3. Bayens, R.D., Bezwoda, W.R.: Lactoferrin and the inflammatory response. Adv. Exp. Med. Biol. 357, 133–141 (1994)

    Google Scholar 

  4. Berney, C., Herren, S., Power, C.A., Gordon, S., Martinez-Pomares, L., Kosco-Vilbois, M.H.: A member of the dendritic cell family that enters B cell follicles and stimulates primary antibody responses identified by a mannose receptor fusion protein. J. Exp. Med. 190, 851–860 (1999)

    Article  PubMed  CAS  Google Scholar 

  5. Bobrowicz, P., Davidson, R.C., Li, H., Potgieter, T.I., Nett, J.H., Hamilton, S.R., Stadheim, T.A., Miele, R.G., Bobrowicz, B., Mitchell, T., Rausch, S., Renfer, E., Wildt, S.: Engineering of an artificial glycosylation pathway blocked in core oligosaccharide assembly in the yeast Pichia pastoris: production of complex humanized glycoproteins with terminal galactose. Glycobiology (Oxf.) 14, 757–766 (2004)

    Article  CAS  Google Scholar 

  6. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976)

    Article  PubMed  CAS  Google Scholar 

  7. Cerwenka, A., Swain, S.L.: TGF-beta1: immunosuppressant and viability factor for T lymphocytes. Microbes Infect. 1, 1291–1296 (1999)

    Article  PubMed  CAS  Google Scholar 

  8. Choi, B.K., Bobrowicz, P., Davidson, R.C., Hamilton, S.R., Kung, D.H., Li, H., Miele, R.G., Nett, J.H., Wildt, S., Gerngross, T.U.: Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc. Natl. Acad. Sci. U. S. A. 100, 5022–5027 (2003)

    Article  PubMed  CAS  Google Scholar 

  9. Cornish, J., Callon, K.E., Naot, D., Palmano, K.P., Banovic, T., Bava, U., Watson, M., Lin, J.M., Tong, P.C., Chen, Q., Chan, V.A., Reid, H.E., Fazzalari, N., Baker, H.M., Baker, E.N., Haggarty, N.W., Grey, A.B., Reid, I.R.: Lactoferrin is a potent regulator of bone cell activity and increases bone formation in vivo. Endocrinology 145, 4366–4374 (2004)

    Article  PubMed  CAS  Google Scholar 

  10. Crocker, P.R., Kelm, S., Dubois, C., Martin, B., McWilliam, A.S., Shotton, D.M., Paulson, J.C., Gordon, S.: Purification and properties of sialoadhesin, a sialic acid-binding receptor of murine tissue macrophages. EMBO J. 10, 1661–1669 (1991)

    PubMed  CAS  Google Scholar 

  11. Curran, C.S., Demick, K.P., Mansfield, J.M.: Lactoferrin activates macrophages via TLR4-dependent and -independent signaling pathways. Cell. Immunol. 242, 23–30 (2006)

    Article  PubMed  CAS  Google Scholar 

  12. Davidson, R.C., Nett, J.H., Renfer, E., Li, H., Stadheim, T.A., Miller, B.J., Miele, R.G., Hamilton, S.R., Choi, B.K., Mitchell, T.I., Wildt, S.: Functional analysis of the ALG3 gene encoding the Dol-P-Man: Man5GlcNAc2-PP-Dol mannosyltransferase enzyme of P. pastoris. Glycobiology (Oxf.) 14, 399–407 (2004)

    Article  CAS  Google Scholar 

  13. Derisbourg, P., Wieruszeski, J.M., Montreuil, J., Spik, G.: Primary structure of glycans isolated from human leucocyte lactotransferrin. Absence of fucose residues questions the proposed mechanism of hyposideraemia. Biochem. J. 269, 821–825 (1990)

    PubMed  CAS  Google Scholar 

  14. Frei, K., Steger, C., Samorapoompichit, P., Lucas, T., Forster, O.: Expression and function of sialoadhesin in rat alveolar macrophages. Immunol. Lett. 71, 167–170 (2000)

    Article  PubMed  CAS  Google Scholar 

  15. Gerngross, T.U.: Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. Nat. Biotechnol. 22, 1409–1414 (2004)

    Article  PubMed  CAS  Google Scholar 

  16. Hamilton, S.R., Bobrowicz, P., Bobrowicz, B., Davidson, R.C., Li, H., Mitchell, T., Nett, J.H., Rausch, S., Stadheim, T.A., Wischnewski, H., Wildt, S., Gerngross, T.U.: Production of complex human glycoproteins in yeast. Science 301, 1244–1246 (2003)

    Article  PubMed  CAS  Google Scholar 

  17. Hamilton, S.R., Davidson, R.C., Sethuraman, N., Nett, J.H., Jiang, Y., Rios, S., Bobrowicz, P., Stadheim, T.A., Li, H., Choi, B.K., Hopkins, D., Wischnewski, H., Roser, J., Mitchell, T., Strawbridge, R.R., Hoopes, J., Wildt, S., Gerngross, T.U.: Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 313, 1441–1443 (2006)

    Article  PubMed  CAS  Google Scholar 

  18. Hwang, S.A., Kruzel, M.L., Actor, J.K.: Lactoferrin augments BCG vaccine efficacy to generate T helper response and subsequent protection against challenge with virulent Mycobacterium tuberculosis. Int. Immunopharmacol. 5, 591–599 (2005)

    Article  PubMed  CAS  Google Scholar 

  19. Hwang, S.A., Wilk, K.M., Bangale, Y.A., Kruzel, M.L., Actor, J.K.: Lactoferrin modulation of IL-12 and IL-10 response from activated murine leukocytes. Med. Microbiol. Immunol. 196, 171–180 (2007)

    Article  PubMed  CAS  Google Scholar 

  20. Kelm, S., Pelz, A., Schauer, R., Filbin, M.T., Tang, S., de Bellard, M.E., Schnaar, R.L., Mahoney, J.A., Hartnell, A., Bradfield, P., et al.: Sialoadhesin, myelin-associated glycoprotein and CD22 define a new family of sialic acid-dependent adhesion molecules of the immunoglobulin superfamily. Curr. Biol. 4, 965–972 (1994)

    Article  PubMed  CAS  Google Scholar 

  21. Kruzel, M.L., Harari, Y., Mailman, D., Actor, J.K., Zimecki, M.: Differential effects of prophylactic, concurrent and therapeutic lactoferrin treatment on LPS-induced inflammatory responses in mice. Clin. Exp. Immunol. 130, 25–31 (2002)

    Article  PubMed  CAS  Google Scholar 

  22. Kruzel, M.L., Zimecki, M.: Lactoferrin and immunologic dissonance: clinical implications. Arch. Immunol. Ther. Exp. 50, 399–410 (2002)

    CAS  Google Scholar 

  23. Legrand, D., Salmon, V., Coddeville, B., Benaissa, M., Plancke, Y., Spik, G.: Structural determination of two N-linked glycans isolated from recombinant human lactoferrin expressed in BHK cells. FEBS Lett. 365, 57–60 (1995)

    Article  PubMed  CAS  Google Scholar 

  24. Li, H., Sethuraman, N., Stadheim, T.A., Zha, D., Prinz, B., Ballew, N., Bobrowicz, P., Choi, B.K., Cook, W.J., Cukan, M., Houston-Cummings, N.R., Davidson, R., Gong, B., Hamilton, S.R., Hoopes, J.P., Jiang, Y., Kim, N., Mansfield, R., Nett, J.H., Rios, S., Strawbridge, R., Wildt, S., Gerngross, T.U.: Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat. Biotechnol. 24, 210–215 (2006)

    Article  PubMed  CAS  Google Scholar 

  25. Loginov, A.V., Uteshev, B.S., Livshits, M.A.: [Mathematical modelling of the action of methotrexate on the kinetics of B-lymphocyte proliferation during the primary response]. Farmakol. Toksikol. 50, 58–70 (1987)

    PubMed  CAS  Google Scholar 

  26. Lonnerdal, B., Iyer, S.: Lactoferrin: molecular structure and biological function. Annu. Rev. Nutr. 15, 93–110 (1995)

    Article  PubMed  CAS  Google Scholar 

  27. Mishell, R.I., Dutton, R.W.: Immunization of dissociated spleen cell cultures from normal mice. J. Exp. Med. 126, 423–442 (1967)

    Article  PubMed  CAS  Google Scholar 

  28. Nakamura, K., Yamaji, T., Crocker, P.R., Suzuki, A., Hashimoto, Y.: Lymph node macrophages, but not spleen macrophages, express high levels of unmasked sialoadhesin: implication for the adhesive properties of macrophages in vivo. Glycobiology (Oxf.) 12, 209–216 (2002)

    Article  CAS  Google Scholar 

  29. Naot, D., Grey, A., Reid, I.R., Cornish, J.: Lactoferrin—a novel bone growth factor. Clin. Med. Res. 3, 93–101 (2005)

    PubMed  Google Scholar 

  30. Samyn-Petit, B., Wajda Dubos, J.P., Chirat, F., Coddeville, B., Demaizieres, G., Farrer, S., Slomianny, M.C., Theisen, M., Delannoy, P.: Comparative analysis of the site-specific N-glycosylation of human lactoferrin produced in maize and tobacco plants. Eur. J. Biochem. 270, 3235–3242 (2003)

    Article  PubMed  CAS  Google Scholar 

  31. Sanchez, L., Calvo, M., Brock, J.H.: Biological role of lactoferrin. Arch. Dis. Child 67, 657–661 (1992)

    Article  PubMed  CAS  Google Scholar 

  32. Spik, G., Coddeville, B., Montreuil, J.: Comparative study of the primary structures of sero-, lacto- and ovotransferrin glycans from different species. Biochimie. 70, 1459–1469 (1988)

    Article  PubMed  CAS  Google Scholar 

  33. Takeda, K., Kaisho, T., Yoshida, N., Takeda, J., Kishimoto, T., Akira, S.: Stat3 activation is responsible for IL-6-dependent T cell proliferation through preventing apoptosis: generation and characterization of T cell-specific Stat3-deficient mice. J. Immunol. 161, 4652–4660 (1998)

    PubMed  CAS  Google Scholar 

  34. van’t Land, B., van Beek, N.M., van den Berg, J.J., M’Rabet, L.: Lactoferrin reduces methotrexate-induced small intestinal damage, possibly through inhibition of GLP-2-mediated epithelial cell proliferation. Dig. Dis. Sci. 49, 425–433 (2004)

    Article  PubMed  CAS  Google Scholar 

  35. van Berkel, P.H., van Veen, H.A., Geerts, M.E., de Boer, H.A., Nuijens, J.H.: Heterogeneity in utilization of N-glycosylation sites Asn624 and Asn138 in human lactoferrin: a study with glycosylation-site mutants. Biochem. J. 319(Pt 1), 117–122 (1996)

    PubMed  Google Scholar 

  36. Wang, S.H., Yang, T.S., Lin, S.M., Tsai, M.S., Wu, S.C., Mao, S.J.: Expression, characterization, and purification of recombinant porcine lactoferrin in Pichia pastoris. Protein Expr. Purif. 25, 41–49 (2002)

    Article  PubMed  CAS  Google Scholar 

  37. Wei, Z., Nishimura, T., Yoshida, S.: Characterization of glycans in a lactoferrin isoform, lactoferrin-a. J. Dairy Sci. 84, 2584–2590 (2001)

    Article  PubMed  CAS  Google Scholar 

  38. Weis, W.I., Taylor, M.E., Drickamer, K.: The C-type lectin superfamily in the immune system. Immunol. Rev. 163, 19–34 (1998)

    Article  PubMed  CAS  Google Scholar 

  39. Yoo, J.K., Cho, J.H., Lee, S.W., Sung, Y.C.: IL-12 provides proliferation and survival signals to murine CD4+ T cells through phosphatidylinositol 3-kinase/Akt signaling pathway. J. Immunol. 169, 3637–3643 (2002)

    PubMed  CAS  Google Scholar 

  40. Zielinski, C.C., Stuller, I., Dorner, F., Potzi, P., Muller, C., Eibl, M.M.: Impaired primary, but not secondary, immune response in breast cancer patients under adjuvant chemotherapy. Cancer 58, 1648–1652 (1986)

    Article  PubMed  CAS  Google Scholar 

  41. Zimecki, M., Artym, J., Chodaczek, G., Kocieba, M., Kruzel, M.: Effects of lactoferrin on the immune response modified by the immobilization stress. Pharmacol. Rep. 57, 811–817 (2005)

    PubMed  CAS  Google Scholar 

  42. Zimecki, M., Kocieba, M., Kruzel, M.: Immunoregulatory activities of lactoferrin in the delayed type hypersensitivity in mice are mediated by a receptor with affinity to mannose. Immunobiology 205, 120–131 (2002)

    Article  PubMed  CAS  Google Scholar 

  43. Zimecki, M., Kruzel, M.L.: Milk-derived proteins and peptides of potential therapeutic and nutritive value. J. Exp. Ther. Oncol. 6, 89–106 (2007)

    PubMed  CAS  Google Scholar 

  44. Zimecki, M., Mazurier, J., Spik, G., Kapp, J.A.: Human lactoferrin induces phenotypic and functional changes in murine splenic B cells. Immunology 86, 122–127 (1995)

    PubMed  CAS  Google Scholar 

  45. Zimecki, M., Mazurier, J., Spik, G., Kapp, J.A.: Lactoferrin (LF) lowers IgM and interleukin 2 receptor expression on WEHI 231 cells and decreases anti-IgM antibody-induced cell death. In: VIII Meeting of the Polish Immunological Society, Wroclaw, Poland, Pol. J. Immunol. 324 (1995)

  46. Zimecki, M., Miedzybrodzki, R., Mazurier, J., Spik, G.: Regulatory effects of lactoferrin and lipopolysaccharide on LFA-1 expression on human peripheral blood mononuclear cells. Arch. Immunol. Ther. Exp. 47, 257–264 (1999)

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Institutes of Health: R42AI051050-02 and R41GM079810-01. We thank Teresa Mitchell for the technical assistant and Bing Gong for the critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian L. Kruzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, BK., Actor, J.K., Rios, S. et al. Recombinant human lactoferrin expressed in glycoengineered Pichia pastoris: effect of terminal N-acetylneuraminic acid on in vitro secondary humoral immune response. Glycoconj J 25, 581–593 (2008). https://doi.org/10.1007/s10719-008-9123-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-008-9123-y

Keywords

Navigation