Skip to main content
Log in

Versatile strategy for the synthesis of biotin-labelled glycans, their immobilization to establish a bioactive surface and interaction studies with a lectin on a biochip

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The emerging role of glycans as versatile biochemical signals in diverse aspects of cellular sociology calls for establishment of sensitive methods to monitor carbohydrate recognition by receptors such as lectins. Most of these techniques involve the immobilization of one of the binding partners on a surface, e.g. atomic force microscopy, glycan array and Surface Plasmon Resonance (SPR), hereby simulating cell surface presentation. Here, we report the synthesis of fluorescent glycoconjugates, with a functionalization strategy which avoids the frequently occurring ring opening at the reducing end for further immobilization on a surface or derivatization with biotin. In order to improve the versatility of these derivatized glycans for biological studies, a new approach for the synthesis of biotinylated and fluorescent glycans has also been realized. Finally, to illustrate their usefulness the neoglycoconjugates were immobilized on different surfaces, and the interaction analysis with a model lectin, the toxin from mistletoe, proved them to act as potent ligands, underscoring the merit of the presented synthetic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Reuter, G., Gabius, H.-J.: Eukaryotic glycosylation: whim of nature or multipurpose tool? Cell. Mol. Life Sci. 55, 368–422 (1999)

    Article  PubMed  CAS  Google Scholar 

  2. Bertozzi, C.R., Kiessling, L.L.: Chemical glycobiology. Science 291, 2357–2369 (2001)

    Article  PubMed  CAS  Google Scholar 

  3. Solís, D., Jiménez-Barbero, J., Kaltner, H., Romero, A., Siebert, H.-C., von der Lieth, C.-W., Gabius, H.-J.: Towards defining the role of glycans as hardware in information storage and transfer: basic principles, experimental approaches and recent progress. Cells Tissues Organs 168, 5–23 (2001)

    Article  PubMed  Google Scholar 

  4. Schmidt, M.A., Riley, L.W., Benz, I.: Sweet new world: glycoproteins in bacterial pathogens. Trends Microbiol. 11, 554–561 (2003)

    Article  PubMed  CAS  Google Scholar 

  5. Gabius, H.-J., Siebert, H.-C., André, S., Jiménez-Barbero, J., Rüdiger, H.: Chemical biology of the sugar code. Chem. Biochem. 5, 740–764 (2004)

    CAS  Google Scholar 

  6. Rudd, P.M., Elliot, T., Cresswell, P., Wilson, I.A., Dwek, R.A.: Glycosylation and the immune system. Science 291, 2370–2376 (2001)

    Article  PubMed  CAS  Google Scholar 

  7. Gabius, H.-J.: Cell surface glycans: the why and how of their functionality as biochemical signals in lectin-mediated information transfer. Crit. Rev. Immunol. 26, 43–80 (2006)

    PubMed  CAS  Google Scholar 

  8. André, S., Kožár, T., Schuberth, R., Unverzagt, C., Kojima, S., Gabius, H.-J.: Substitutions in the N-glycan core as regulators of biorecognition: the case of core-fucose and bisecting GlcNAc moieties. Biochemistry 46, 6984–6995 (2007)

    Article  PubMed  Google Scholar 

  9. André, S., Sanchez-Ruderisch, H., Nakagawa, H., Buchholz, M., Kopitz, J., Forberich, P., Kemmner, W., Böck, C., Deguchi, K., Detjen, K.M., Wiedenmann, B., von Knebel Doeberitz, M., Gress, T.M., Nishimura, S.-I., Rosewicz, S., Gabius, H.-J.: Tumor suppressor p16INK4a modulator of glycomic profile and galectin-1 expression to increase susceptibility to carbohydrate-dependent induction of anoikis in pancreatic carcinoma cells. FEBS J. 274, 3233–3256 (2007)

    Article  PubMed  Google Scholar 

  10. Dettmann, W., Grandbois, M., André, S., Benoit, M., Wehle, A.K., Kaltner, H., Gabius, H.-J., Gaub, H.E.: Differences in zero-force and force-driven kinetics of ligand dissociation from b-galactosidase-specific proteins (plant and animal lectins, immunoglobulin G) monitored by plasmon resonance and dynamic single molecule force microscopy. Arch. Biochem. Biophys. 383, 157–170 (2000)

    Article  PubMed  CAS  Google Scholar 

  11. Schäffer, C., Messner, P.: Glycobiology of surface layer proteins. Biochimie 83, 591–599 (2001)

    Article  PubMed  Google Scholar 

  12. Hirabayashi, J.: Oligosaccharide microarrays for glycomics. Trends Biotechnol. 21, 141–143 (2003)

    Article  PubMed  CAS  Google Scholar 

  13. Sanchez, J.-F., Lescar, J., Chazalet, V., Audfray, A., Gagnon, J., Alvarez, R., Breton, C., Imberty, A., Mitchell, E.P.: Biochemical and structural analysis of Helix pomatia agglutinin. J. Biol Chem. 281, 20171–20180 (2005)

    Article  Google Scholar 

  14. Shin, S., Park, S., Lee, M.R.: Carbohydrate microarrays: an advanced technology for functional studies of glycans. Chem. Eur. J. 11, 2894–2901 (2005)

    Article  CAS  Google Scholar 

  15. Likhosherstov, L.M., Novikova, V.A., Dervitskaya, V.A., Kochetkov, N.K.: A new simple synthesis of amino sugar β-glycosylamines. Carbohydr. Res 146, c1–c5 (1986)

    Article  CAS  Google Scholar 

  16. Vetter, D., Gallop, M.A.: Strategies for the synthesis and screening of glycoconjugates. A library of glycosylamines. Bioconjug. Chem. 6, 316–318 (1995)

    Article  PubMed  CAS  Google Scholar 

  17. Hackenberger, C.P.R., O’Reilly, M.K., Imperiali, B.: Improving glycopeptide synthesis: a convenient protocol for the preparation of β-glycosylamines and the synthesis of glycopeptides. J. Org. Chem. 70, 3574–3578 (2005)

    Article  PubMed  CAS  Google Scholar 

  18. Bigge, J.C., Patel, T.P., Bruce, J.A., Goulding, P.N., Charles, S.M., Parekh, R.B.: Nonselective and efficient fluorescent labelling of glycans using 2-amino benzamide and anthranilic acid. Anal. Biochem. 230, 229–238 (1995)

    Article  PubMed  CAS  Google Scholar 

  19. Locke, D., Bevans, C.G., Wang, L.-X., Zhang, Y., Harris, A.L., Lee, Y.C.: Neutral, acidic, and basic derivatives of anthranilamide that confer different formal charge to reducing oligosaccharides. Carbohydr. Res. 339, 221–231 (2004)

    Article  PubMed  CAS  Google Scholar 

  20. Rothenberg, B.E., Hayes, B.H., Toomre, D., Manzi, A.E., Varki, A.: Biotinylated diaminopyridine: an approach to tagging oligosaccharides and exploring their biology. Proc. Natl. Acad. Sci. USA 90, 11939–11943 (1993)

    Article  PubMed  CAS  Google Scholar 

  21. Toomre, D., Varki, A.: Advances in the use of biotinylated diaminopyridine (BAP) as a versatile fluorescent tag for oligosaccharides. Glycobiology 4, 653–663 (1994)

    Article  PubMed  CAS  Google Scholar 

  22. Xia, B., Kawar, Z.S., Ju, T., Alvarez, R.A., Sachdev, G.P., Cummings, R.D.: Versatile fluorescent derivatization of glycans for glycomic analysis. Nat. Methods. 2, 845–850 (2005)

    Article  PubMed  CAS  Google Scholar 

  23. Jiménez, M., Sáiz, J.L., André, S., Gabius, H.-J., Solís, D.: Monomer/dimer equilibrium of the AB-type lectin from mistletoe enables combination of toxin/agglutinin activities in one protein: analysis of native and citraconylated proteins by ultracentrifugation/gel filtration and cell biological consequences of dimer destabilization. Glycobiology 15, 1386–1395 (2005)

    Article  PubMed  Google Scholar 

  24. André, S., Kaltner, H., Furuike, T., Nishimura, S.-I., Gabius, H.-J.: Persubstituted cyclodextrin-based glycoclusters as inhibitors of protein-carbohydrate recognition using purified plant and mammalian lectins and wild-type and lectin-gene-transfected tumor cells as targets. Bioconjug. Chem. 15, 87–98 (2004)

    Article  PubMed  Google Scholar 

  25. Dasgupta, F., Anderson, L.: Efficient preparation of allyl 2,3,6,2″,3″,6″-hexa-O-benzyl-b-lactoside and its use as a glycosyl acceptor for chain extension at O-4″. Carbohydr. Res. 264, 155–160 (1994)

    Article  PubMed  CAS  Google Scholar 

  26. Stott, K., Stonehouse, J., Keeler, J., Hwang, T.L., Shaka, A.J.: Excitation sculpting in high-resolution nuclear magnetic resonance spectroscopy: application to selective NOE experiments.. J. Am. Chem. Soc. 117, 4199–4200 (1995)

    Article  CAS  Google Scholar 

  27. Asensio, J.L., Cañada, F.J., Khan, N., Mootoo, D.A., Jiménez-Barbero, J.: Conformational differences between O- and C-glycosides: The alpha-O-Man-(1(1)-beta-Gal/alpha-C-Man-(1(1)-(-Gal case-A decisive demonstration of the importance of the exo-anomeric effect on the conformation of glycosides. Chem. Eur. J. 6, 1035–1041 (2000)

    Article  CAS  Google Scholar 

  28. Mayer, M., Meyer, B.: Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J. Am. Chem. Soc. 123, 6108–6117 (2001)

    Article  PubMed  CAS  Google Scholar 

  29. Asensio, J.L., Espinosa, J.F., Dietrich, H., Cañada, F.J., Schmidt, R.R., Martin-Lomas, M., André, S., Gabius, H.-J., Jiménez-Barbero, J.: Bovineheart galectin-1 selects a unique (Syn) conformation of C-lactose, a flexible lactose analogue. J. Am. Chem. Soc. 121, 8995–9000 (1999)

    Article  CAS  Google Scholar 

  30. Asensio, J.L., Martin-Pastor, M., Jiménez-Barbero, J.: The use of cvff and cff91 force-fields in conformational-analysis of carbohydrate molecules. Comparison with amber molecular mechanics and dynamics calculations for methyl alpha-lactoside. Int. J. Biol. Macromol. 17, 137–148 (1995)

    Article  PubMed  CAS  Google Scholar 

  31. Allinger, N.L., Yuh, Y.H., Lii, J.H.: Molecular mechanics. The MM3 force field for hydrocarbons. Vibrational frequencies and thermodynamics. J. Am. Chem. Soc. 111, 8551–8566 (1989)

    Article  CAS  Google Scholar 

  32. Still, W.C., Tempzyk, A., Hawley, R., Hendrickson, T.: Semianalytical treatment of solvation for molecular mechanics and dynamics. J. Am. Chem. Soc. 112, 6127–6129 (1990)

    Article  CAS  Google Scholar 

  33. Poveda, A., Asensio, J.L., Martin-Pastor, M., Jiménez-Barbero, J.: Solution conformation and dynamics of a tetrasaccharide related to the Lewis(x) antigen deduced by NMR relaxation measurements. J. Biomol. NMR 10, 29–43 (1997)

    Article  PubMed  CAS  Google Scholar 

  34. Corzana, F., Cuesta, I., Freire, F., Revuelta, J., Bastida, A., Jiménez-Barbero, J., Asensio, J.L.: The pattern of distribution of amino groups modulates the structure and dynamics of natural aminoglycosides: implications for RNA recognition. J. Am. Chem. Soc. 129, 2849–2865 (2007)

    Article  PubMed  CAS  Google Scholar 

  35. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J.: Automated docking using a Lamarckian genetic algorithm and empirical binding free energy function. J. Comput. Chem. 19, 1639–1647 (1998)

    Article  CAS  Google Scholar 

  36. The Protein Data Bank: Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: Nucleic Acids Res. 28, 235–242 (2000). http://www.rcsb.org/pdb

  37. Jiménez, M., André, S., Siebert, H.-C., Gabius, H.-J., Solís, D.: AB-type lectin (toxin/agglutinin) from mistletoe: differences in affinity of the two galactoside-binding Trp/Tyr-sites and regulation of their functionality by monomer/dimer equilibrium. Glycobiology 16, 926–937 (2006)

    Article  PubMed  Google Scholar 

  38. Kajihara, Y., Kamiyama, D., Yamamoto, N., Sakakibara, T., Izumi, M., Hashimoto, H.: Synthesis of 2-[(2-pyridyl)amino]ethyl β-d-lactosaminide and evaluation of its acceptor ability for sialyltransferase: a comparision with 4-methylumbelliferyl and dansyl β-d-lactosaminide. Carbohydr. Res. 339, 1545–1550 (2004)

    Article  PubMed  CAS  Google Scholar 

  39. Sanz, D., Perona, A., Claramunt, R.M., Elguero, J.: Synthesis and spectroscopic properties of Schiff bases derived from 3-hydroxy-4-pyridinecarboxaldehyde. Tetrahedron 61, 145–154 (2005)

    Article  CAS  Google Scholar 

  40. Dahmen, J., Frejd, T., Grönberg, G., Lave, T., Magnusson, G., Noori, G.: 2-Bromoethyl glycosides: synthesis and characterisation. Carbohydr. Res. 116, 303–307 (1983)

    Article  CAS  Google Scholar 

  41. Pace, V., Martínez, F., Fernández, M., Sinisterra, J.V., Alcántara, A.R.: Effective monoallylation of anilines catalyzed by supported KF. Org. Lett. 9, 2661–2664 (2007)

    Article  PubMed  CAS  Google Scholar 

  42. Gitlin, G., Bayer, E.A., Wilchek, M.: Studies on the biotin-binding site of avidin. Lysine residues involved in the active site. Biochem. J. 242, 923–926 (1987)

    PubMed  CAS  Google Scholar 

  43. Gitlin, G., Bayer, E.A., Wilchek, M.: Studies on the biotin-binding site of avidin. Tryptophan residues involved in the active site. Biochem. J. 250, 291–294 (1988)

    PubMed  CAS  Google Scholar 

  44. Leteux, C., Stoll, M.S., Childs, R.A., Chai, W., Vorozhaikina, M., Feizi, T.: Influence of oligosaccharide presentation on the interactions of carbohydrate sequence-specific antibodies and the selectins. Observations with biotinylated oligosaccharides. J. Immunol. Methods. 227, 109–119 (1999)

    Article  PubMed  CAS  Google Scholar 

  45. Angus, D.I., Kiefel, M.J., von Itzstein, M.: The synthesis of biotinylated carbohydrates as probes for carbohydrate-recognizing proteins. Bioorg. Med. Chem. 8, 2709–2718 (2000)

    Article  PubMed  CAS  Google Scholar 

  46. Fernández-Alonso, M.C., Cañada, F.J., Barbero-Jiménez, J., Cuevas, G.: Molecular recognition of saccharides by proteins. Insights on the origin of the carbohydrate–aromatic interactions. J. Am. Chem. Soc 127, 7379 –7386 (2005)

    Article  Google Scholar 

  47. Gabius, H.-J.: Animal lectins. Eur. J. Biochem. 243, 543–576 (1997)

    Article  PubMed  CAS  Google Scholar 

  48. Lee, R.T., Gabius, H.-J., Lee, Y.C.: Ligand binding characterization of the major mistletoe lectin. J. Biol. Chem. 267, 23722–23727 (1992)

    PubMed  CAS  Google Scholar 

  49. Martin, J.N., Muñoz, E.V., Shwergold, C., Souard, F., Asensio, J.L., Jiménez-Barbero, J., Cañada, J., Vicent, C.: Carbohydrate-based DNA ligands: sugar-oligoamides as a tool to study carbohydrate-nucleic acid interactions. J. Am. Chem. Soc 127, 9518 –9533 (2005)

    Article  PubMed  CAS  Google Scholar 

  50. Heaton, N.J., Bello, P., Herradón, B., del Campo, A., Jiménez-Barbero, J.: NMR Study of Intramolecular Interactions between aromatic groups: Van der Waals, charge-transfer, or quadrupolar interactions? J. Am. Chem. Soc 120, 9632 –9645 (1998)

    Article  CAS  Google Scholar 

  51. Bharadwaj, S., Kaltner, H., Korchagina, E.Y., Bovin, N.V., Gabius, H.-J., Surolia, A.: Microcalorimetric indications for ligand binding as a function of the protein for galactoside-specific plant and avian galectins. Biochim. Biophys. Acta 1472, 191–196 (1999)

    PubMed  CAS  Google Scholar 

  52. Espinosa, J.F., Bruix, M., Jarreton, O., Troels Skrydstrup, J.M.B., Jiménez-Barbero, J.: Conformational differences between C- and O-glycosides: The (-C-mannobiose/(-O-mannobiose case. Chem. Eur. J 5, 442–448 (1999)

    Article  CAS  Google Scholar 

  53. Siebert, H.-C., André, S., Lu, S.Y., Frank, M., Kaltner, H., van Kuik, J.A., Korchagina, E.Y., Bovin, N., Tajkhorshid, E., Kaptein, R., Vliegenthart, J.F.G., von der Lieth, C.-W., Jiménez-Barbero, J., Kopitz, J., Gabius, H.-J.: Unique conformer selection of human growth-regulatory lectin galectin-1 for ganglioside GM1 versus bacterial toxins. Biochemistry 42, 14762–1473 (2003)

    Article  PubMed  CAS  Google Scholar 

  54. Asensio, J.L., Canada, F.J., Garcia-Herrero, A., Murillo, M.T., Fernández-Mayoralas, A., Johns, B.A., Janusz, K., Zhu, Z., Johnson, C.R., Jiménez-Barbero, J.: Conformational behavior of aza-C-glycosides: experimental demonstration of the relative role of the exo-anomeric effect and 1,3-type interactions in controlling the conformation of regular glycosides. J. Am. Chem. Soc 121, 11318–11329 (1999)

    Article  CAS  Google Scholar 

  55. Alonso-Plaza, J.M., Canales, M.A., Jimenez, M., Roldan, J.L., Garcia-Herrero, A., Iturrino, L., Asensio, J.L., Canada, F.J., Romero, A., Siebert, H.C., André, S., Solís, D., Gabius, H.-J., Jiménez-Barbero, J.: NMR investigations of protein-carbohydrate interactions: insights into the topology of the bound conformation of a lactose isomer and β-galactosyl xyloses to mistletoe and galectin-1. Biochim. Biophys. Acta 1568, 225–236 (2001)

    PubMed  CAS  Google Scholar 

  56. Danguy, A., Kayser, K., Bovin, N.V., Gabius, H.-J.: The relevance of neoglycoconjugates for histology and pathology. Trends Glycosci. Glycotechnol. 7, 261–275 (1995)

    CAS  Google Scholar 

  57. Gabius, H.-J.: Glycohistochemistry: the why and how of detection and localization of endogenous lectins. Anat. Histol. Embryol. 30, 3–31 (2001)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by a Research Project of the MEC (Ministerio de Educación y Ciencia de España, CTQ2006-09052/BQU), a European Project (FP-62003-NMP-SMF-3, proposal 011774-2), an EC Marie Curie Research Training Network grant (MRTN-CT-2005-019561), the research initiative LMUexcellent and one of the authors (F. Javier Muñoz) thanks the MEC for a Ph.D. grant (MEC-FPU predoctoral fellowship AP2003-4820).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María J. Hernáiz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2.30 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz, F.J., Rumbero, Á., Sinisterra, J.V. et al. Versatile strategy for the synthesis of biotin-labelled glycans, their immobilization to establish a bioactive surface and interaction studies with a lectin on a biochip. Glycoconj J 25, 633–646 (2008). https://doi.org/10.1007/s10719-008-9115-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-008-9115-y

Keywords

Navigation