Skip to main content
Log in

Glycosphingolipids in vascular endothelial cells: relationship of heterogeneity in Gb3Cer/CD77 receptor expression with differential Shiga toxin 1 cytotoxicity

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Shiga toxin (Stx) 1 binds to the glycosphingolipid (GSL) globotriaosylceramide (Gb3Cer/CD77) and injures human endothelial cells. In order to gain insight into Stx1-induced cellular impairment, we analysed in detail the molecular heterogeneity of Stx1 receptors in two endothelial cell lines differing in their Stx1-sensitivity. We observed a moderate sensitivity to Stx1 of human brain microvascular endothelial cells (HBMECs, CD50 > 200 ng/ml), but a considerably higher mortality rate in cultures of EA.hy 926 cells, a cell line derived from human umbilical vein endothelial cells (CD50 of 0.2 ng/ml). Immunofluorescence microscopy demonstrated the presence of Gb3Cer in both cell lines, but showed an enhanced content of Gb3Cer in EA.hy 926 cells. Solid phase overlay binding assays of isolated GSLs combined with nanoelectrospray ionization quadrupole time-of-flight mass spectrometry demonstrated a balanced proportion of Gb3Cer and globotetraosylceramide (Gb4Cer) in HBMECs, but an increase of Gb3Cer and absence of Gb4Cer in EA.hy 926 cells. Gb3Cer species with C24:1/C24:0 fatty acids were found to dominate over those with C16:0 fatty acids in EA.hy 926 cells, but were similarly distributed in HBMECs. Reverse transcriptase polymerase chain reaction indicated the concomitant presence of Gb3Cer and Gb4Cer synthases in HBMECs, whereas EA.hy 926 cells expressed Gb3Cer synthase, but completely lacked Gb4Cer synthase. This deficiency, resulting in the accumulation of Gb3Cer in EA.hy 926 cells, represents the most prominent molecular reason that underlies the different Stx1 sensitivities of HBMECs and EA.hy 926 endothelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CID:

Collision-induced-dissociation

DTAF:

dichlorotriazinylamino fluorescein

EA.hy 926:

HUVEC derived endothelial cell line

ESI Q-TOF-MS:

electrospray ionization quadrupole time-of-flight mass spectrometry

GSL(s):

glycosphingolipid(s)

HBMECs:

human brain microvascular endothelial cells

HPTLC:

high-performance thin-layer chromatography

HUVECs:

human umbilical vein endothelial cells

RT-PCR:

reverse transcriptase polymerase chain reaction

Stx:

Shiga toxin

References

  1. Sandvig, K.: Shiga toxins. Toxicon. 39, 1629–1635 (2001)

    Article  PubMed  CAS  Google Scholar 

  2. Karch, H., Tarr, P.I., Bielaszewska, M.: Enterohaemorrhagic Escherichia coli in human medicine. Int. J. Med. Microbiol. 295, 405–418 (2005)

    Article  PubMed  CAS  Google Scholar 

  3. Ling, H., Boodhoo, A., Hazes, B., Cummings, M.D., Armstrong, G.D., Brunton, J.L., Read, R.J.: Structure of the Shiga-like toxin I B-pentamer complexed with an analogue of its receptor Gb3. Biochemistry 37, 1777–1788 (1998)

    Article  PubMed  CAS  Google Scholar 

  4. Lingwood, C.A.: Role of verotoxin receptors in pathogenesis. Trends Microbiol. 4, 147–153 (1996)

    Article  PubMed  CAS  Google Scholar 

  5. Sandvig, K., Garred, Ø., Prydz, K., Kozlov, J.V., Hansen, S.H., van Deurs, B.: Retrograde transport of endocytosed Shiga toxin to the endoplasmic reticulum. Nature 358, 510–512 (1992)

    Article  PubMed  CAS  Google Scholar 

  6. Endo, Y., Tsurugi, K., Yutsudo, T., Takeda, Y., Ogasawara, T., Igarashi, K.: Site of action of a Vero toxin (VT2) from Escherichia coli O157:H7 and Shiga toxin on eukaryotic ribosomes. Eur. J. Biochem. 171, 45–50 (1988)

    Article  PubMed  CAS  Google Scholar 

  7. Garred, Ø., van Deurs, B., Sandvig, K.: Furin-induced cleavage and activation of Shiga toxin. J. Biol. Chem. 270, 10817–10821 (1995)

    Article  PubMed  CAS  Google Scholar 

  8. Stults, C.L., Sweeley, C.C., Macher, B.A.: Glycosphingolipids: structure, biological source, and properties. Methods Enzymol. 179, 167–214 (1989)

    Article  PubMed  CAS  Google Scholar 

  9. Müthing, J.: Mammalian glycosphingolipids. In: Freiser-Reid, B., Tatsuka, K., Thiem, J. (eds.) Glycoscience: Chemistry and Chemical Biology, vol. 3, pp. 2220–2249. Springer-Verlag, Heidelberg, Germany (2001)

    Google Scholar 

  10. Schnaar, R.L.: Glycosphingolipids in cell surface recognition. Glycobiology 1, 477–485 (1991)

    Article  PubMed  CAS  Google Scholar 

  11. Feizi, T.: Carbohydrate-mediated recognition systems in innate immunity. Immunol. Rev. 173, 79–88 (2000)

    Article  PubMed  CAS  Google Scholar 

  12. Schlossmacher, M.G., Cullen, V., Müthing, J.: The glucocerebrosidase gene and Parkinson’s disease in Ashkenazi Jews. N. Engl. J. Med. 352, 728–731 (2005)

    Article  PubMed  Google Scholar 

  13. Karlsson, K.A.: Animal glycosphingolipids as membrane attachment sites for bacteria. Annu. Rev. Biochem. 58, 309–350 (1989)

    Article  PubMed  CAS  Google Scholar 

  14. Teneberg, S., Ångström, J., Ljungh, Å.: Carbohydrate recognition by enterohemorrhagic Escherichia coli: characterization of a novel glycosphingolipid from cat small intestine. Glycobiology. 14, 187–196 (2004)

    Article  PubMed  CAS  Google Scholar 

  15. Miller-Podraza, H., Lanne, B., Ångström, J., Teneberg, S., Milh, M.A., Jovall, P.Å., Karlsson, H., Karlsson, K.A.: Novel binding epitope for Helicobacter pylori found in neolacto carbohydrate chains: structure and cross-binding properties. J. Biol. Chem. 280, 19695–19703 (2005)

    Article  PubMed  CAS  Google Scholar 

  16. Nakamura, K., Suzuki, M., Inagaki, F., Yamakawa, T., Suzuki, A.: A new ganglioside showing choleragenoid-binding activity in mouse spleen. J. Biochem. 101, 825–835 (1987)

    PubMed  CAS  Google Scholar 

  17. Stins, M.F., Gilles, F., Kim, K.S.: Selective expression of adhesion molecules on human brain microvascular endothelial cells. J. Neuroimmunol. 76, 81–90 (1997)

    Article  PubMed  CAS  Google Scholar 

  18. Edgell, C.J.S., McDonald, C.C., Graham, J.B.: Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc. Natl. Acad. Sci. U.S.A. 80, 3734–3737 (1983)

    Article  PubMed  CAS  Google Scholar 

  19. Kim, K.S.: Pathogenesis of bacterial meningitis: from bacteraemia to neuronal injury. Nat. Rev. Neurosci. 4, 376–385 (2003)

    Article  CAS  Google Scholar 

  20. Bielaszewska, M., Karch, H.: Consequences of enterohaemorrhagic Escherichia coli infection for the vascular endothelium. Thromb. Haemost. 94, 312–318 (2005)

    PubMed  CAS  Google Scholar 

  21. Kim, K.J., Chung, J.W., Kim, K.S.: 67-kDa laminin receptor promotes internalization of cytotoxic necrotizing factor 1-expressing Escherichia coli K1 into human brain microvascular endothelial cells. J. Biol. Chem. 280, 1360–1368 (2005)

    Article  PubMed  CAS  Google Scholar 

  22. Shin, S., Kim, K.S.: RhoA and Rac1 contribute to type III group B streptococcal invasion of human brain microvascular endothelial cells. Biochem. Biophys. Res. Commun. 345, 538–542 (2006)

    Article  PubMed  CAS  Google Scholar 

  23. Khan, N.A., Kim, Y., Shin, S., Kim, K.S.: FimH-mediated Escherichia coli K1 invasion of human brain microvascular endothelial cells. Cell. Microbiol. 9, 169–178 (2007)

    Article  PubMed  CAS  Google Scholar 

  24. Bielaszewska, M., Sinha, B., Kuczius, T., Karch, H.: Cytolethal distending toxin from Shiga toxin-producing Escherichia coli O157 causes irreversible G2/M arrest, inhibition of proliferation, and death of human endothelial cells. Infect. Immun. 73, 552–562 (2005)

    Article  PubMed  CAS  Google Scholar 

  25. Kügler, S., Böcker, K., Heusipp, G., Greune, L., Kim, K.S., Schmidt, M.A.: Pertussis toxin transiently affects barrier integrity, organelle organization and transmigration of monocytes in a human brain microvascular endothelial cell barrier model. Cell. Microbiol. 9, 619–632 (2007)

    Article  PubMed  CAS  Google Scholar 

  26. Emeis, J.J., Edgell, C.J.S.: Fibrinolytic properties of a human endothelial hybrid cell line (Ea.hy 926). Blood 71, 1669–1675 (1988)

    PubMed  CAS  Google Scholar 

  27. Schönherr, E., Schaefer, L., O’Connell, B.C., Kresse, H.: Matrix metalloproteinase expression by endothelial cells in collagen lattices changes during co-culture with fibroblasts and upon induction of decorin expression. J. Cell. Physiol. 187, 37–47 (2001)

    Article  PubMed  Google Scholar 

  28. Strazynski, M., Eble, J.A., Kresse, H., Schönherr, E.: Interleukin (IL)-6 and IL-10 induce decorin mRNA in endothelial cells, but interaction with fibrillar collagen is essential for its translocation. J. Biol. Chem. 279, 21266–21270 (2004)

    Article  PubMed  CAS  Google Scholar 

  29. Kainulainen, V., Nelimarkka, L., Järveläinen, H., Laato, M., Jalkanen, M., Elenius, K.: Suppression of syndecan-1 expression in endothelial cells by tumor necrosis factor-α. J. Biol. Chem. 271, 18759–18766 (1996)

    Article  PubMed  CAS  Google Scholar 

  30. Obrig, T.O., Del Vecchio, P.J., Brown, J.E., Moran, T.P., Rowland, B.M., Judge, T.K., Rothman, S.W.: Direct cytotoxic action of Shiga toxin on human vascular endothelial cells. Infect. Immun. 56, 2373–2378 (1988)

    PubMed  CAS  Google Scholar 

  31. Kaye, S.A., Louise, C.B., Boyd, B., Lingwood, C.A., Obrig, T.G.: Shiga toxin-associated hemolytic uremic syndrome: interleukin-1β enhancement of Shiga toxin cytotoxicity toward human vascular endothelial cells in vitro. Infect. Immun. 61, 3886–3891 (1993)

    PubMed  CAS  Google Scholar 

  32. Gillard, B.K., Jones, M.A., Marcus, D.M.: Glycosphingolipids of human umbilical vein endothelial cells and smooth muscle cells. Arch. Biochem. Biophys. 256, 435–445 (1987)

    Article  PubMed  CAS  Google Scholar 

  33. Müthing, J., Duvar, S., Heitmann, D., Hanisch, F.G., Neumann, U., Lochnit, G., Geyer, R., Peter-Katalinić, J.: Isolation and structural characterization of glycosphingolipids of in vitro propagated human umbilical vein endothelial cells. Glycobiology 9, 459–468 (1999)

    Article  PubMed  Google Scholar 

  34. Kanda, T., Ariga, T., Kubodera, H., Jin, H.L., Owada, K., Kasama, T., Yamawaki, M., Mizusawa, H.: Glycosphingolipid composition of primary cultured human brain microvascular endothelial cells. J. Neurosci. Res. 78, 141–150 (2004)

    Article  PubMed  CAS  Google Scholar 

  35. Van de Kar, N.C.A.J., Monnens, L.A.H., Karmali, M.A., van Hinsbergh, V.W.M.: Tumor necrosis factor and interleukin-1 induce expression of the verocytotoxin receptor globotriaosylceramide on human endothelial cells: implications for the pathogenesis of the hemolytic uremic syndrome. Blood 80, 2755–2764 (1992)

    PubMed  Google Scholar 

  36. Ramegowda, B., Samuel, J.E., Tesh, V.L.: Interaction of Shiga toxins with human brain microvascular endothelial cells: cytokines as sensitizing agents. J. Infect. Dis. 180, 1205–1213 (1999)

    Article  PubMed  CAS  Google Scholar 

  37. Eisenhauer, P.E., Chaturvedi, P., Fine, R.E., Ritchie, A.J., Pober, J.S., Cleary, T.G., Newburg, D.S.: Tumor necrosis factor alpha increases human cerebral endothelial cell Gb3 and sensitivity to Shiga toxin. Infect. Immun. 69, 1889–1894 (2001)

    Article  PubMed  CAS  Google Scholar 

  38. Stricklett, P.K., Hughes, A.K., Ergonul, Z., Kohan, D.E.: Molecular basis for up-regulation by inflammatory cytokines of Shiga toxin 1 cytotoxicity and globotriaosylceramide expression. J. Infect. Dis. 186, 976–982 (2002)

    Article  PubMed  CAS  Google Scholar 

  39. Ergonul, Z., Hughes, A.K., Kohan, D.E.: Induction of apoptosis of human brain microvascular endothelial cells by Shiga toxin. J. Infect. Dis. 187, 154–158 (2003)

    Article  PubMed  CAS  Google Scholar 

  40. Duvar, S., Peter-Katalinić, J., Hanisch, F.G., Müthing, J.: Isolation and structural characterization of glycosphingolipids of in vitro propagated bovine aortic endothelial cells. Glycobiology 7, 1099–1109 (1997)

    Article  PubMed  CAS  Google Scholar 

  41. Heidemann, R., Riese, U., Lütkemeyer, D., Büntemeyer, H., Lehmann, J.: The Super-Spinner: a low cost animal cell culture bioreactor for the CO2 incubator. Cytotechnology 14, 1–9 (1994)

    Article  PubMed  CAS  Google Scholar 

  42. Meisen, I., Friedrich, A.W., Karch, H., Witting, U., Peter-Katalinić, J., Müthing, J.: Application of combined high-performance thin-layer chromatography immunostaining and nanoelectrospray ionisation quadrupole time-of-flight tandem mass spectrometry to the structural characterization of high- and low-affinity binding ligands of Shiga toxin 1. Rapid Commun. Mass Spectrom. 19, 3659–3665 (2005)

    Article  PubMed  CAS  Google Scholar 

  43. Kasai, M., Iwamori, M., Nagai, Y., Okumura, K., Tada, T.: A glycolipid on the surface of mouse natural killer cells. Eur. J. Immunol. 10, 175–180 (1980)

    Article  PubMed  CAS  Google Scholar 

  44. Müthing, J., Burg, M., Möckel, B., Langer, M., Metelmann-Strupat, W., Werner, A., Neumann, U., Peter-Katalinić, J., Eck, J.: Preferential binding of the anticancer drug rViscumin (recombinant mistletoe lectin) to terminally α2-6-sialylated neolacto-series gangliosides. Glycobiology 12, 485–497 (2002)

    Article  PubMed  Google Scholar 

  45. Müthing, J., Meisen, I., Kniep, B., Haier, J., Senninger, N., Neumann, U., Langer, M., Witthohn, K., Milosević, J., Peter-Katalinić, J.: Tumor-associated CD75s gangliosides and CD75s-bearing glycoproteins with Neu5Acα2-6Galβ1-4GlcNAc residues are receptors for the anticancer drug rViscumin. FASEB J. 19, 103–105 (2005)

    PubMed  Google Scholar 

  46. Steffensen, R., Carlier, K., Wiels, J., Levery, S.B., Stroud, M., Cedergren, B., Sojka, B.N., Bennett, E.P., Jersild, C., Clausen, H.: Cloning and expression of the histo-blood group Pk UDP-galactose: Galβ1-4Glcβ1-1Cer α1,4-galactosyltransferase. J. Biol. Chem. 275, 16723–16729 (2000)

    Article  PubMed  CAS  Google Scholar 

  47. Müthing, J., Meisen, I., Bulau, P., Langer, M., Witthohn, K., Lentzen, H., Neumann, U., Peter-Katalinić, J.: Mistletoe lectin I is a sialic acid-specific lectin with strict preference to gangliosides and glycoproteins with terminal Neu5Acα2-6Galβ1-4GlcNAc residues. Biochemistry 43, 2996–3007 (2004)

    Article  PubMed  CAS  Google Scholar 

  48. Müthing, J., Unland, F., Heitmann, D., Orlich, M., Hanisch, F.G., Peter-Katalinić, J., Knäuper, V., Tschesche, H., Kelm, S., Schauer, R., Lehmann, J.: Different binding capacities of influenza A and Sendai viruses to gangliosides from human granulocytes. Glycoconj. J. 10, 120–126 (1993)

    Article  PubMed  Google Scholar 

  49. Müthing, J.: TLC in structure and recognition studies of glycosphingolipids. In: Hounsell, E.F. (ed.) Methods in Molecular Biology, pp. 183–195. Humana, Totawa, NJ (1998)

    Google Scholar 

  50. Meisen, I., Peter-Katalinić, J., Müthing, J.: Direct analysis of silica gel extracts from immunostained glycosphingolipids by nanoelectrospray ionization quadrupole time-of-flight mass spectrometry. Anal. Chem. 76, 2248–2255 (2004)

    Article  PubMed  CAS  Google Scholar 

  51. Meisen, I., Peter-Katalinić, J., Müthing, J.: Discrimination of neolacto-series gangliosides with α2-3- and α2-6-linked N-acetylneuraminic acid by nanoelectrospray ionization low-energy collision-induced dissociation tandem quadrupole TOF MS. Anal. Chem. 75, 5719–5725 (2003)

    Article  PubMed  CAS  Google Scholar 

  52. Domon, B., Costello, C.E.: A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj. J. 5, 397–409 (1988)

    Article  CAS  Google Scholar 

  53. Domon, B., Costello, C.E.: Structure elucidation of glycosphingolipids and gangliosides using high-performance tandem mass spectrometry. Biochemistry 27, 1534–1543 (1988)

    Article  PubMed  CAS  Google Scholar 

  54. Obrig, T.G., Louise, C.B., Lingwood, C.A., Boyd, B., Barley-Maloney, L., Daniel, T.O.: Endothelial heterogeneity in Shiga toxin receptors and responses. J. Biol. Chem. 268, 15484–15488 (1993)

    PubMed  CAS  Google Scholar 

  55. Ohmi, K., Kiyokawa, N., Takeda, T., Fujimoto, J.: Human microvascular endothelial cells are strongly sensitive to Shiga toxins. Biochem. Biophys. Res. Commun. 251, 137–141 (1998)

    Article  PubMed  CAS  Google Scholar 

  56. Jacewicz, M., Acheson, D.W.K., Binion, D.G., West, G.A., Lincicome, L.L., Fiocchi, C., Keusch, G.T.: Responses of human intestinal microvascular endothelial cells to Shiga toxins 1 and 2 and pathogenesis of hemorrhagic colitis. Infect. Immun. 67, 1439–1444 (1999)

    PubMed  CAS  Google Scholar 

  57. Rösner, H., Greis, Ch., Rodemann, H.P.: Density-dependent expression of ganglioside GM3 by human skin fibroblasts in an all-or-none fashion, as a possible modulator of cell growth in vitro. Exp. Cell Res. 190, 161–169 (1990)

    Article  PubMed  Google Scholar 

  58. Boyd, B., Magnusson, G., Zhiuyan, Z., Lingwood, C.A.: Lipid modulation of glycolipid receptor function. Eur. J. Biochem. 223, 873–878 (1994)

    Article  PubMed  CAS  Google Scholar 

  59. Kiarash, A., Boyd, B., Lingwood, C.A.: Glycosphingolipid receptor function is modified by fatty acid content. J. Biol. Chem. 269, 11138–11146 (1994)

    PubMed  CAS  Google Scholar 

  60. Binnington, B., Lingwood, D., Nutikka, A., Lingwood, C.A.: Effect of globotriaosylceramide fatty acid α-hydroxylation on the binding by verotoxin 1 and verotoxin 2. Neurochem. Res. 27, 807–813 (2002)

    Article  PubMed  CAS  Google Scholar 

  61. Sandvig, K., Ryd, M., Garred, Ø., Schweda, E., Holm, P.K., van Deurs, B.: Retrograde transport from the Golgi complex to the ER of both Shiga toxin and the nontoxic Shiga B-fragment is regulated by butyric acid and cAMP. J. Cell Biol. 126, 53–64 (1994)

    Article  PubMed  CAS  Google Scholar 

  62. Sekino, T., Kiyokawa, N., Taguchi, T., Takenouchi, H., Matsui, J., Tang, W.R., Suzuki, T., Nakajima, H., Saito, M., Ohmi, K., Katagiri, Y.U., Okita, H., Nakao, H., Takeda, T., Fujimoto, J.: Characterization of a Shiga-toxin 1-resistant stock of Vero cells. Microbiol. Immunol. 48, 377–387 (2004)

    PubMed  CAS  Google Scholar 

  63. Hakomori, S.I.: Cell adhesion/recognition and signal transduction through glycosphingolipid microdomain. Glycoconj. J. 17, 143–151 (2000)

    Article  PubMed  CAS  Google Scholar 

  64. Sonnino, S., Prinetti, A., Mauri, L., Chigorno, V., Tettamanti, G.: Dynamic and structural properties of sphingolipids as driving forces for the formation of membrane domains. Chem. Rev. 106, 2111–2125 (2006)

    Article  PubMed  CAS  Google Scholar 

  65. Fantini, J., Maresca, M., Hammache, D., Yahi, N., Delézay, O.: Glycosphingolipid (GSL) microdomains as attachment platforms for host pathogens and their toxins on intestinal epithelial cells: activation of signal transduction pathways and perturbations of intestinal absorption and secretion. Glycoconj. J. 17, 173–179 (2000)

    Article  PubMed  CAS  Google Scholar 

  66. Lencer, W.I., Saslowsky, D.: Raft trafficking of AB5 subunit bacterial toxins. Biochim. Biophys. Acta 1746, 314–321 (2005)

    Article  PubMed  CAS  Google Scholar 

  67. Falguières, T., Mallard, F., Baron, C., Hanau, D., Lingwood, C., Goud, B., Salamero, J., Johannes, L.: Targeting of Shiga toxin B-subunit to retrograde transport route in association with detergent-resistant membranes. Mol. Biol. Cell 12, 2453–2468 (2001)

    PubMed  Google Scholar 

  68. Smith, D.C., Sillence, D.J., Falguières, T., Jarvis, R.M., Johannes, L., Lord, J.M., Platt, F.M., Roberts, L.M.: The association of Shiga-like toxin with detergent-resistant membranes is modulated by glucosylceramide and is an essential requirement in the endoplasmic reticulum for a cytotoxic effect. Mol. Biol. Cell 17, 1375–1387 (2006)

    Article  PubMed  CAS  Google Scholar 

  69. Falguières, T., Römer, W., Amessou, M., Afonso, C., Wolf, C., Tabet, J.C., Lamaze, C., Johannes, L.: Functionally different pools of Shiga toxin receptor, globotriaosyl ceramide, in HeLa cells. FEBS J. 273, 5205–5218 (2006)

    Article  PubMed  CAS  Google Scholar 

  70. Tarr, P.I., Gordon, C.A., Chandler, W.L.: Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet 365, 1073–1086 (2005)

    PubMed  CAS  Google Scholar 

  71. Karmali, M.A.: Prospects for preventing serious systemic toxemic complications of Shiga toxin producing Escherichia coli infections using Shiga toxin receptor analogues. J. Infect. Dis. 189, 355–359 (2004)

    Article  PubMed  Google Scholar 

  72. Müthing, J., Čačić, M.: Glycosphingolipid expression in human skeletal and heart muscle assessed by immunostaining thin-layer chromatography. Glycoconj. J. 14, 19–28 (1997)

    Article  PubMed  Google Scholar 

  73. Bethke, U., Müthing, J., Schauder, B., Conradt, P., Mühlradt, P.F.: An improved semi-quantitative enzyme immunostaining procedure for glycosphingolipid antigens on high performance thin layer chromatograms. J. Immunol. Methods 89, 111–116 (1986)

    Article  PubMed  CAS  Google Scholar 

  74. Markotić, A., Čulić, V., Kurir, T., Meisen, I., Büntemeyer, H., Boraska, V., Zemunik, T., Petri, N., Mesarić, M., Peter-Katalinić, J., Müthing, J.: Oxygenation alters ganglioside expression in rat liver following partial hepatectomy. Biochem. Biophys. Res. Commun. 330, 131–141 (2005)

    Article  PubMed  CAS  Google Scholar 

  75. Chester, M.A.: IUPAC-IUB Joint Commission on Biochemical Nomenclature. Nomenclature of glycolipids. Recommendations 1997. Glycoconj. J. 16, 1–6 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Deutsche Forschungsgemeinschaft (DFG), program “Infections of the Endothelium” SPP 1130 project KA 717/4-2 (H.K.), the SFB 629 (B2, M.A.S.), the cooperative projects FR2569/1-1 (A.W.F.) and MU845/4-1 (J.M.) and a grant from the Interdisciplinary Center of Clinical Research (IZKF) Münster, project no. Ka2/061/04 (H.K.).

The authors gratefully acknowledge the expert technical assistance of M. Hülsmann, E. Kalthoff, and L. Greune. We thank Phillip I. Tarr (Washington University School of Medicine, St. Louis, MO, USA) for critical reading of the manuscript and stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Müthing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schweppe, C.H., Bielaszewska, M., Pohlentz, G. et al. Glycosphingolipids in vascular endothelial cells: relationship of heterogeneity in Gb3Cer/CD77 receptor expression with differential Shiga toxin 1 cytotoxicity. Glycoconj J 25, 291–304 (2008). https://doi.org/10.1007/s10719-007-9091-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-007-9091-7

Keywords

Navigation