Glycoconjugate Journal

, Volume 25, Issue 1, pp 59–68 | Cite as

Glycan microarrays for screening sialyltransferase specificities

  • Ola BlixtEmail author
  • Kirk Allin
  • Ognian Bohorov
  • Xiaofei Liu
  • Hillevi Andersson-Sand
  • Julia Hoffmann
  • Nahid Razi


Here we demonstrate that glycan microarrays can be used for high-throughput acceptor specificity screening of various recombinant sialyltransferases. Cytidine-5′-monophospho-N-acetylneuraminic acid (CMP-Neu5Ac) was biotinylated at position 9 of N-acetylneuraminic acid (Neu5Ac) by chemoenzymatic synthesis generating CMP-9Biot-Neu5Ac. The activated sugar nucleotide was used as donor substrate for various mammalian sialyltranferases which transferred biotinylated sialic acids simultaneously onto glycan acceptors immobilized onto a microarray glass slide. Biotinylated glycans detected with fluorescein–streptavidin conjugate to generate a specificity profile for each enzyme both confirming previously known specificities and reveal additional specificity information. Human α2,6sialyltransferase-I (hST6Gal-I) also sialylates chitobiose structures (GlcNAcβ1-4GlcNAc)n including N-glycans, rat α2,3sialyltransferase (rST3Gal-III) tolerates fucosylated acceptors such as Lewisa, human α2,3sialyltransferase-IV (hST3Gal-IV) broadly sialylates oligosaccharides of types 1–4 and porcine α2,3sialyltransferase-I (pST3Gal-I) sialylates ganglio-oligosaccharides and core 2 O-glycans in our array system. Several of these sialyltransferases perform a substitution reaction and exchange a sialylated acceptor with a biotinylated sialic acid but are restricted to the most specific acceptor substrates. Thus, this method allows for a rapid generation of enzyme specificity information and can be used towards synthesis of new carbohydrate compounds and expand the glycan array compound library.


Carbohydrate Sialyltransferase Specificity Enzyme Glycan array 



N-acetylneuraminic acid


cytidine-5′-monophospho-N-acetylneuraminic acid
















mass spectrometry


nuclear magnetic resonance


ganglioside GM1


sialyl-lacto-N-tetraose b

type 1


type 2


type 3


type 4


core 1


core 2


core 3


core 4


core 6


H-type 2




This work was funded by NIGMS and The Consortium for Functional Glycomics GM62116. The authors acknowledge Dr. Celso A. Reis for providing the baculovirus construct of human ST6GalNAc I, Dr. James C. Paulson for valuable discussions, Oren Berger and Yingning Zhang for technical assistance.


  1. 1.
    Nyame, A.K., Kawar, Z.S., Cummings, R.D.: Antigenic glycans in parasitic infections: implications for vaccines and diagnostics. Arch. Biochem. Biophys. 426, 182–200 (2004)PubMedCrossRefGoogle Scholar
  2. 2.
    Rudd, P.M., Wormald, M.R., Dwek, R.A.: Sugar-mediated ligand–receptor interactions in the immune system. Trends Biotechnol. 22, 524–530 (2004)PubMedCrossRefGoogle Scholar
  3. 3.
    Dube, D.H., Bertozzi, C.R.: Glycans in cancer and inflammation—potential for therapeutics and diagnostics. Nat. Rev. Drug Discov. 4, 477–488 (2005)PubMedCrossRefGoogle Scholar
  4. 4.
    Harduin-Lepers, A., Vallejo-Ruiz, V., Krzewinski-Recchi, M.A., Samyn-Petit, B., Julien, S., Delannoy, P.: The human sialyltransferase family. Biochimie 83, 727–737 (2001)PubMedCrossRefGoogle Scholar
  5. 5.
    Wymer, N., Toone, E.J.: Enzyme-catalyzed synthesis of carbohydrates. Curr. Opin. Chem. Biol. 4, 110–119 (2000)PubMedCrossRefGoogle Scholar
  6. 6.
    Blixt, O., Razi, N.: Strategies for synthesis of an oligosaccharide library using a chemoenzymatic approach. In: Wang, P.G., Ichikawa, Y. (eds.) Synthesis of Carbohydrates Through Biotechnology, pp. 93–112. American Chemical Society, Washington DC (2004)Google Scholar
  7. 7.
    Palcic, M.M., Sujino, K.: Assays for glycosyltransferases. Trends Glycosci. Glycotechnol. 13, 361–370 (2001)Google Scholar
  8. 8.
    Blixt, O., Head, S., Mondala, T., Scanlan, C., Huflejt, M.E., Alvarez, R., Bryan, M.C., Fazio, F., Calarese, D., Stevens, J., Razi, N., Stevens, D.J., Skehel, J.J., van Die, I., Burton, D.R., Wilson, I.A., Cummings, R., Bovin, N., Wong, C.H., Paulson, J.C.: Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc. Natl. Acad. Sci. USA. 101, 17033–17038 (2004)PubMedCrossRefGoogle Scholar
  9. 9.
    Blixt, O., Paulson, J.C.: Biocatalytic preparation of N-glycolylneuraminic acid, de-aminoneuraminic acid (KDN) and 9-azido-9-deoxy sialic acid oligosaccharides. Adv. Synth. Biocatal. 345, 687–690 (2003)CrossRefGoogle Scholar
  10. 10.
    Blixt, O., Collins, B.E., van den Nieuwenhof, I.M., Crocker, P.R., Paulson, J.C.: Sialoside specificity of the siglec family assessed using novel multivalent probes: identification of potent inhibitors of myelin-associated glycoprotein. J. Biol. Chem. 278, 31007–31019 (2003)PubMedCrossRefGoogle Scholar
  11. 11.
    Gross, H.J., Bunsch, A., Paulson, J.C., Brossmer, R.: Activation and transfer of novel synthetic 9-substituted sialic acids. Eur. J. Biochem. 168, 595–602 (1987)PubMedCrossRefGoogle Scholar
  12. 12.
    Brossmer, R., Gross, H.J.: Sialic acid analogs and application for preparation of neoglycoconjugates. Methods Enzymol. 247, 153–176 (1994)PubMedCrossRefGoogle Scholar
  13. 13.
    Grundmann, U., Nerlich, C., Rein, T., Zettlmeissl, G.: Complete cDNA sequence encoding human beta-galactoside alpha-2,6-sialyltransferase. Nucleic Acids Res. 18, 667 (1990)PubMedCrossRefGoogle Scholar
  14. 14.
    Blixt, O., Brown, J., Schur, M.J., Wakarchuk, W., Paulson, J.C.: Efficient preparation of natural and synthetic galactosides with a recombinant beta-1,4-galactosyltransferase-/UDP-4′-gal epimerase fusion protein. J. Org. Chem. 66, 2442–2448 (2001)PubMedCrossRefGoogle Scholar
  15. 15.
    Ikehara, Y., Kojima, N., Kurosawa, N., Kudo, T., Kono, M., Nishihara, S., Issiki, S., Morozumi, K., Itzkowitz, S., Tsuda, T., Nishimura, S.I., Tsuji, S., Narimatsu, H.: Cloning and expression of a human gene encoding an N-acetylgalactosamine-alpha2,6-sialyltransferase (ST6GalNAc I): a candidate for synthesis of cancer-associated sialyl-Tn antigens. Glycobiology 9, 1213–1224 (1999)PubMedCrossRefGoogle Scholar
  16. 16.
    George, S.K., Schwientek, T., Holm, B., Reis, C.A., Clausen, H., Kihlberg, J.: Chemoenzymatic synthesis of sialylated glycopeptides derived from mucins and T-cell stimulating peptides. J. Am. Chem. Soc. 123, 11117–11125 (2001)PubMedCrossRefGoogle Scholar
  17. 17.
    Williams, M.A., Kitagawa, H., Datta, A.K., Paulson, J.C., Jamieson, J.C.: Large-scale expression of recombinant sialyltransferases and comparison of their kinetic properties with native enzymes. Glycoconj. J. 12, 755–761 (1995)PubMedCrossRefGoogle Scholar
  18. 18.
    Van den Eijnden, D.H., Schiphorst, W.E.: Detection of beta-galactosyl(1 leads to 4)N-acetylglucosaminide alpha(2 leads to 3)-sialyltransferase activity in fetal calf liver and other tissues. J. Biol. Chem. 256, 3159–3162 (1981)PubMedGoogle Scholar
  19. 19.
    Weinstein, J., de Souza-e-Silva, U., Paulson, J.C.: Sialylation of glycoprotein oligosaccharides N-linked to asparagine. Enzymatic characterization of a Gal beta 1 to 3(4)GlcNAc alpha 2 to 3 sialyltransferase and a Gal beta 1 to 4GlcNAc alpha 2 to 6 sialyltransferase from rat liver. J. Biol. Chem. 257, 13845–13853 (1982)PubMedGoogle Scholar
  20. 20.
    Wen, D.X., Livingston, B.D., Medzihradszky, K.F., Kelm, S., Burlingame, A.L., Paulson, J.C.: Primary structure of Gal beta 1,3(4)GlcNAc alpha 2,3-sialyltransferase determined by mass spectrometry sequence analysis and molecular cloning. Evidence for a protein motif in the sialyltransferase gene family. J. Biol. Chem. 267, 21011–21019 (1992)PubMedGoogle Scholar
  21. 21.
    Kitagawa, H., Paulson, J.C.: Cloning of a novel alpha 2,3-sialyltransferase that sialylates glycoprotein and glycolipid carbohydrate groups. J. Biol. Chem. 269, 1394–1401 (1994)PubMedGoogle Scholar
  22. 22.
    Sasaki, K., Watanabe, E., Kawashima, K., Sekine, S., Dohi, T., Oshima, M., Hanai, N., Nishi, T., Hasegawa, M.: Expression cloning of a novel Gal beta (1-3/1-4) GlcNAc alpha 2,3-sialyltransferase using lectin resistance selection. J. Biol. Chem. 268, 22782–22787 (1993)PubMedGoogle Scholar
  23. 23.
    Krzewinski-Recchi, M.A., Julien, S., Juliant, S., Teintenier-Lelievre, M., Samyn-Petit, B., Montiel, M.D., Mir, A.M., Cerutti, M., Harduin-Lepers, A., Delannoy, P.: Identification and functional expression of a second human beta-galactoside alpha2,6-sialyltransferase, ST6Gal II. Eur. J. Biochem. 270, 950–961 (2003)PubMedCrossRefGoogle Scholar
  24. 24.
    Joziasse, D.H., Schiphorst, W.E., van den Eijnden, D.H., van Kuik, J.A., van Halbeek, H., Vliegenthart, J.F.: Branch specificity of bovine colostrum CMP-sialic acid: N-acetyllactosaminide alpha 2–6-sialyltransferase. Interaction with biantennary oligosaccharides and glycopeptides of N-glycosylproteins. J. Biol. Chem. 260, 714–719 (1985)PubMedGoogle Scholar
  25. 25.
    Joziasse, D.H., Schiphorst, W.E., Van den Eijnden, D.H., Van Kuik, J.A., Van Halbeek, H., Vliegenthart, J.F.: Branch specificity of bovine colostrum CMP-sialic acid: Gal beta 1–4GlcNAc-R alpha 2–6-sialyltransferase. Sialylation of bi-, tri-, and tetraantennary oligosaccharides and glycopeptides of the N-acetyllactosamine type. J. Biol. Chem. 262, 2025–2033 (1987)PubMedGoogle Scholar
  26. 26.
    Blixt, O., Allin, K., Pereira, L., Datta, A., Paulson, J.C.: Efficient chemoenzymatic synthesis of O-linked sialyl oligosaccharides. J. Am. Chem. Soc. 124, 5739–5746 (2002)PubMedCrossRefGoogle Scholar
  27. 27.
    Gillespie, W., Kelm, S., Paulson, J.C.: Cloning and expression of the Gal beta 1, 3GalNAc alpha 2,3-sialyltransferase. J. Biol. Chem. 267, 21004–21010 (1992)PubMedGoogle Scholar
  28. 28.
    Kitagawa, H., Paulson, J.C.: Differential expression of five sialyltransferase genes in human tissues. J. Biol. Chem. 269, 17872–17878 (1994)PubMedGoogle Scholar
  29. 29.
    Kono, M., Ohyama, Y., Lee, Y.C., Hamamoto, T., Kojima, N., Tsuji, S.: Mouse beta-galactoside alpha 2,3-sialyltransferases: comparison of in vitro substrate specificities and tissue specific expression. Glycobiology 7, 469–479 (1997)PubMedCrossRefGoogle Scholar
  30. 30.
    Priatel, J.J., Chui, D., Hiraoka, N., Simmons, C.J., Richardson, K.B., Page, D.M., Fukuda, M., Varki, N.M., Marth, J.D.: The ST3Gal-I sialyltransferase controls CD8+ T lymphocyte homeostasis by modulating O-glycan biosynthesis. Immunity 12, 273–283 (2000)PubMedCrossRefGoogle Scholar
  31. 31.
    Chandrasekaran, E.V., Xue, J., Xia, J., Chawda, R., Piskorz, C., Locke, R.D., Neelamegham, S., Matta, K.L.: Analysis of the specificity of sialyltransferases toward mucin core 2, globo, and related structures. Identification of the sialylation sequence and the effects of sulfate, fucose, methyl, and fluoro substituents of the carbohydrate chain in the biosynthesis of selectin and siglec ligands, and novel sialylation by cloned alpha2,3(O)sialyltransferase. Biochemistry 44, 15619–15635 (2005)PubMedCrossRefGoogle Scholar
  32. 32.
    Miyamoto, D., Takashima, S., Suzuki, T., Nishi, T., Sasaki, K., Morishita, Y., Suzuki, Y.: Glycolipid acceptor specificity of a human Gal beta(1-3/1-4) GlcNAc alpha 2,3-sialyltransferase. Biochem. Biophys. Res. Commun. 217, 852–858 (1995)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Ola Blixt
    • 1
    Email author
  • Kirk Allin
    • 1
  • Ognian Bohorov
    • 1
  • Xiaofei Liu
    • 1
  • Hillevi Andersson-Sand
    • 1
  • Julia Hoffmann
    • 1
  • Nahid Razi
    • 1
  1. 1.Glycan Array Synthesis Core-D, Consortium for Functional Glycomics, Department of Molecular Biology, CB216The Scripps Research InstituteLa JollaUSA

Personalised recommendations