Glycoconjugate Journal

, Volume 25, Issue 1, pp 49–58 | Cite as

Glyco-array technology for efficient monitoring of plant cell wall glycosyltransferase activities

  • Matthew Shipp
  • Ramya Nadella
  • Hui Gao
  • Vladimir Farkas
  • Hans Sigrist
  • Ahmed FaikEmail author


The plant cell wall is a complex network of polysaccharides. The diversity in the linkage types connecting all monosaccharides within these polysaccharides would need a large set of glycosyltransferases to catalyze their formation. Development of a methodology that would allow monitoring of glycosyltransferase activities in an easy and high-throughput manner would help assign biochemical functions, and understand their roles in building this complex network. A microarray-based method was optimized for testing glycosyltransferases involved in plant wall biosynthesis using an α(1,2)fucosyltransferase involved in xyloglucan biosynthesis. The method is simple, sensitive, and easy to implement in any lab. Tamarind xyloglucan polymer and trimer, and a series of cello-oligosaccharides were immobilized on a thin-coated photo-activable glass slide. The slide with the attached sugars was then used to estimate the incorporation of [14C]Fuc onto xyloglucan polymer and trimer. [14C]-radiolabel incorporation is revealed with a standard phosphoimager scanner, after exposure of the glycochip to a phosphor screen and detection. The method proved to be sensitive enough to detect as low as 45 cpm/spot. Oriented anchoring of small oligosaccharides (trimer) was required for optimal transferase activities. The glycochip was also used to monitor and estimate xyloglucan fucosyltransferase activity in detergent-solubilized crude extracts from pea microsomes that are known to contain this enzyme activity. Our data indicate that the methodology can be used for efficient and rapid monitoring of glycosyltransferase activities involved in plant wall polysaccharides biosynthesis.


Cell wall Glycosyltransferases Glycochip Xyloglucan Microarray 



arabidopsis fucosyltransferase 1


degree of polymerization


high performance liquid chromatography


matrix-assisted laser-desorption/ionization time-of-flight




Spodoptera frugiperda 21


tamarind xyloglucan







We would like to thank Dr. Kenneth Keegstra for providing AtFUT1 protein expressed in Spodoptera frugiperda 21 (Sf21) cells. Our thanks go also to all of the members of the Faik laboratory and cell wall group at Ohio University, in particular to Dr. Showalter and Mr Wei Zeng, for helpful discussion and technical support. This work was supported in part by grant no. II/2/2005 to center of excellence GLYCOBIOS from the Slovak Academy of Sciences and grant and no. 2/6133/06 from Grant Agency VEGA to V.F.


  1. 1.
    Angeloni, S., Ridet, J.L., Kusy, N., Gao, H., Cervoisier, F., Guinchard, S., Kochhar, S., Sigrist, H., Sprenger, N.: Glycoprofiling with micro-arrays of glycoconjugates and lectins. Glycobiology 15, 31–41 (2005)PubMedCrossRefGoogle Scholar
  2. 2.
    Blixt, O., Head, S., Mondala, T., Scanlan, C., Huflejt, M.E., Alvarez, R., Bryan, M.C., Fazio, F., Calarese, D., Stevens, J., Razi, N., Stevens, D.J., Skehel, J.J., Die, I.V., Burton, D.R., Wilson, I.A., Cummings, R., Bovin, N., Wong, C.-H., Paulson, J.: Printed covalent glycan array for ligand profiling of divers glycan binding proteins. Proc. Natl. Acad. Sci. U. S. A. 101, 17033–17038 (2004)PubMedCrossRefGoogle Scholar
  3. 3.
    Blixt, O., Norberg, T.: Enzymatic glycosylation of reducing oligosaccharides linked to a solid phase or lipid via a cleavable squarate linker. Carbohyd. Res. 319, 80–91 (1999)CrossRefGoogle Scholar
  4. 4.
    Chevolot, Y., Martins, J., Milosevic, N., Leonard, D., Zeng, S., Malissard, M., Berger, E.G., Maier, P., Mathieu, H.J., Crout, D.H.G., Sigrist, H.: Immobilisation on polystyrene of diazirine derivatives of mono- and disaccharides: biological activities of modified surfaces. Bioorg. Med. Chem. 9, 2943–2953 (2001)PubMedCrossRefGoogle Scholar
  5. 5.
    Darvill, A., McNeil, M., Albersheim, P., Delmer, D.P.: The Biochemistry of Plants, p. 91. Academic, New York (1980)Google Scholar
  6. 6.
    Drickamer, K., Taylor, M.E.: Glycan arrays for functional glycomics. Genome Biol. 3, 1034.1–1034.4 (2002)CrossRefGoogle Scholar
  7. 7.
    Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956)CrossRefGoogle Scholar
  8. 8.
    Faik, A., Chileshe, C., Sterling, J., Maclachlan, G.: Xyloglucan galactosyl- and fucosyl-transferase activities from pea epicotyl microsomes. Plant Physiol. 114, 245–254 (1997)PubMedCrossRefGoogle Scholar
  9. 9.
    Faik, A., Bar-Peled, M., DeRocher, A.E., Zeng, W., Perrin, R.M., Wilkerson, C., Raikhel, N.V., Keegstra, K.: Biochemical characterization and molecular cloning of an α(1,2)Fucosyltransferase that catalyzes the last step of cell wall xyloglucan biosynthesis in Pea. J. Biol. Chem. 275, 15082–15089 (2000)PubMedCrossRefGoogle Scholar
  10. 10.
    Faik, A., Price, N.J., Raikhel, N.V., Keegstra, K.: An Arabidopsis gene encoding an α-xylosyltransferase involved in xyloglucan biosynthesis. Proc. Natl. Acad. Sci. U. S. A. 99, 7797–7802 (2002)PubMedCrossRefGoogle Scholar
  11. 11.
    Guillaumie, F., Sterling, J.D., Jensen, K.J., Thomas, O.R.T., Mohnen, D.: Solid-supported enzymatic synthesis of pectic oligogalacturonides and their analysis by MALDI-TOF mass spectrometry. Cabohyd. Res. 338, 1951–1960 (2003)CrossRefGoogle Scholar
  12. 12.
    Hirabayashi, J.: Oligosaccharide microarrays for glycomics. Trends Biotechnol. 21, 141–143 (2003)PubMedCrossRefGoogle Scholar
  13. 13.
    Keegstra, K., Talmadge, K.W., Bauer, W.D., Albersheim, P.: The structure of plant cell walls. III. A model of the walls of suspension-cultured sycamore cells based on the interconnections of the macromolecular components. Plant Physiol. 51, 188–196 (1973)PubMedCrossRefGoogle Scholar
  14. 14.
    Khraltsova, L.S., Sablina, M.A., Melikhova, T.D., Joziasso, D.H., Kaltmer, H., Gabius, H.J., Bovin, N.V.: An enzyme-linked lectin assay for α1,3-galactosyltransferase. Anal. Biochem. 280, 250–257 (2000)PubMedCrossRefGoogle Scholar
  15. 15.
    Larsen, K., Thygesen, M.B., Guillaumie, F., Willats, W.G.T., Jensen, K.J.: Solid-phase chemical tools for glycobiology. Carbohyd. Res. 341, 1209–1234 (2006)CrossRefGoogle Scholar
  16. 16.
    Maruyama, A., Ishihara, T., Kim, J.-S., Kim, S.W., Akaike, T.: Nanoparticle DNA carrier with Poly(l-lysine) grafted polysaccharide copolymer and Poly(d,l-lactic acid). Bioconjugate Chem. 8, 735–742 (1997)CrossRefGoogle Scholar
  17. 17.
    Nagahori, N., Nishimura, S.-I.: Direct and efficient monitoring of glycosyltransferase reactions on gold colloidal nanoparticles by using mass spectrometry. Chem. Eur. J. 12, 6478–6485 (2006)CrossRefGoogle Scholar
  18. 18.
    Perrin, R.M., DeRocher, A.E., Bar-Peled, M., Zeng, W., Norambuena, L., Orellana, A., Raikhel, N.V., Keegstra, K.: Xyloglucan fucosyltransferase, an enzyme involved in plant cell wall biosynthesis. Science 284, 1976–197930 (1999)PubMedCrossRefGoogle Scholar
  19. 19.
    Schwarz, M., Spector, L., Gargir, A., Shtevi, A., Gortler, M., Altstock, R.T., Dukler, A.A., Dotan, N.: A new kind of carbohydrate array, its use for profiling antiglycan antibodies, and the discovery of a novel human cellulose-binding antibody. Glycobiology 13, 749–754 (2003)PubMedCrossRefGoogle Scholar
  20. 20.
    Shin, I., Park, S., Lee, MR.: Carbohydrate microarrays: an advanced technology for functional studies of glycans. Chem. Eur. J. 11, 2894–2901 (2005)CrossRefGoogle Scholar
  21. 21.
    Roy, R., Katzenellenbogen, E., Jennings, H.J.: Improved procedures for the conjugation of oligosaccharides to protein by reductive amination. Can. J. Biochem Cell. Biol. 62, 270–275 (1983)CrossRefGoogle Scholar
  22. 22.
    Willats, W.G.T., Rasmussen, S.E., Kristensen, T., Mikkelsen, J.D., Knox, J.P.: Sugar-coated microarrays: a novel slide surface for the high-throughput analysis of glycans. Proteomics 2, 1666–1671 (2002)PubMedCrossRefGoogle Scholar
  23. 23.
    Willats, W.G.T., Knox, J.P.: The plant cell wall, p. 92. CRC, Boca Raton, FL (2003)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Matthew Shipp
    • 1
  • Ramya Nadella
    • 1
    • 2
  • Hui Gao
    • 3
  • Vladimir Farkas
    • 4
  • Hans Sigrist
    • 3
  • Ahmed Faik
    • 1
    • 2
    Email author
  1. 1.Environmental and Plant Biology departmentOhio UniversityAthensUSA
  2. 2.Molecular and Cellular Biology programOhio UniversityAthensUSA
  3. 3.Arrayon BiotechnologyNeuchâtelSwitzerland
  4. 4.Institute of Chemistry Slovak Academy of SciencesBratislavaSlovakia

Personalised recommendations