Skip to main content

Advertisement

Log in

Lyso-GM3, its dimer, and multimer: their synthesis, and their effect on epidermal growth factor-induced receptor tyrosine kinase

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Glycosphingolipids, particularly gangliosides, are known to modulate growth factor receptor tyrosine kinase. A well-documented example is the inhibitory effect of GM3 on kinase associated with epidermal growth factor receptor (EGFR) in human epidermoid carcinoma A431 cells. Lyso-GM3 was detected as a minor component in A431 cells, and may function as an auxiliary factor in GM3-dependent inhibition of EGFR. We studied the inhibitory effect of chemically synthesized GM3, lyso-GM3, and its derivatives, on EGFR function, based on their interaction in membrane microdomain, with the following major findings: (1) GM3, EGFR, and caveolin coexist, but tetraspanins CD9 and CD82 are essentially absent, within the same low-density membrane fraction, separated by sucrose density gradient ultracentrifugation. (2) Strong interaction between EGFR and GM3 was indicated by increasing binding of EGFR to GM3-coated polystyrene beads, in a GM3 dose-dependent manner. Confocal microscopy results suggested that three components in the microdomain (GM3, EGFR, and caveolin) are closely associated. (3) Lyso-GM3 or lyso-GM3 dimer strongly inhibited EGFR kinase activity, in a dose-dependent manner, while lyso-GM3 trimer and tetramer did not. >50 μM lyso-GM3 was cytolytic, while >50 μM lyso-GM3 dimer was not cytolytic, yet inhibited EGFR kinase strongly. Thus, lyso-GM3 and its dimer exert an auxiliary effect on GM3-induced inhibition of EGFR kinase and cell growth, and lyso-GM3 dimer may be a good candidate for pharmacological inhibitor of epidermal tumor growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

DMEM:

Dulbecco’s modified Eagle’s medium

EGF:

epidermal growth factor

EGFR:

epidermal growth factor receptor

FBS:

fetal bovine serum

GFR:

growth factor receptor

GM3:

NeuAcα3Galβ4Glcβ1Cer

HPTLC:

high-performance thin-layer chromatography

HRP:

horseradish peroxidase

mAb:

monoclonal antibody

MALDI-TOF MS:

matrix assisted laser desorption/ionization time-of-flight mass spectrometry

PBS:

phosphate-buffered saline

PNF:

post-nuclear fraction

r.t.:

room temperature

TBS:

Tris-buffered saline

References

  1. Hakomori, S., Igarashi, Y.: Functional role of glycosphingolipids in cell recognition and signaling. J. Biochem. (Tokyo) 118, 1091–103 (1995)

    CAS  Google Scholar 

  2. Miljan, E.A., Bremer, E.G.: Regulation of growth factor receptors by gangliosides. Science STKE 2002, RE15, 1–0 (2002)

    Google Scholar 

  3. Yates, A.J., Rampersaud, A.: Sphingolipids as receptor modulators: An overview. In: Ledeen, R.W., Hakomori, S., Yates, A.J., Schneider, J.S., Yu, R.K. (eds.) Sphingolipids as signaling modulators in the nervous system, Vol. 845, pp. 57–71. Annals of the NY Academy of Sciences. New York Acad Sci, New York, NY (1998)

  4. Ushiro, H., Cohen, S.: Identification of phosphotyrosine as a product of epidermal growth factor-activated protein kinase in A431 cell membranes. J. Biol. Chem. 255, 8363–8365 (1980)

    PubMed  CAS  Google Scholar 

  5. Cohen, S., Carpenter, G., King, L.: Epidermal growth factor receptor–protein kinase interactions: co-purification of receptor and epidermal growth factor-enhanced phosphorylation activity. J. Biol. Chem. 255, 4834–4842 (1980)

    PubMed  CAS  Google Scholar 

  6. Hunter, T., Cooper, J.A.: Epidermal growth factor induces rapid tyrosine phosphorylation of proteins in A431 human tumor cells. Cell 24, 741–752 (1981)

    Article  PubMed  CAS  Google Scholar 

  7. Fernandes, H., Cohen, S., Bishayee, S.: Glycosylation-induced conformational modification positively regulates receptor–receptor association: a study with an aberrant epidermal growth factor receptor (EGFRvIII/DEGFR) expressed in cancer cells. J. Biol. Chem. 276, 5375–5383 (2001)

    Article  PubMed  CAS  Google Scholar 

  8. Bremer, E.G., Schlessinger, J., Hakomori, S.: Ganglioside-mediated modulation of cell growth: Specific effects of GM3 on tyrosine phosphorylation of the epidermal growth factor receptor. J. Biol. Chem. 261, 2434–2440 (1986)

    PubMed  CAS  Google Scholar 

  9. Hanai, N., Nores, G.A., MacLeod, C., Torres-Mendez, C.-R., Hakomori, S.: Ganglioside-mediated modulation of cell growth: specific effects of GM3 and lyso-GM3 in tyrosine phosphorylation of the epidermal growth factor receptor. J. Biol. Chem. 263, 10915–10921 (1988)

    PubMed  CAS  Google Scholar 

  10. Wang, X.-Q., Sun, P., O’Gorman, M., Tai, T., Paller, A.S.: Epidermal growth factor receptor glycosylation is required for ganglioside GM3 binding and GM3-mediated suppression of activation. Glycobiology 11, 515–522 (2001)

    Article  PubMed  CAS  Google Scholar 

  11. Yoon, S., Nakayama, K., Hikita, T., Handa, K., Hakomori, S.: Epidermal growth factor receptor tyrosine kinase is modulated by GM3 interaction with N-linked GlcNAc termini of the receptor. Proc. Natl. Acad. Sci. U S A 103, 18987–18991 (2006)

    Article  PubMed  CAS  Google Scholar 

  12. Hanai, N., Nores, G.A., Torres-Mendez, C.-R., Hakomori, S.: Modified ganglioside as a possible modulator of transmembrane signaling mechanism through growth factor receptors: A preliminary note. Biochem. Biophys. Res. Commun. 147, 127–34 (1987)

    Article  PubMed  CAS  Google Scholar 

  13. Dohi, T., Nores, G., Hakomori, S.: An IgG3 monoclonal antibody established after immunization with GM3 lactone: immunochemical specificity and inhibition of melanoma cell growth in vitro and in vivo. Cancer Res. 48, 5680–5685 (1988)

    PubMed  CAS  Google Scholar 

  14. Yamamura, S., Handa, K., Hakomori, S.: A close association of GM3 with c-Src and Rho in GM3-enriched microdomains at the B16 melanoma cell surface membrane: A preliminary note. Biochem. Biophys. Res. Commun. 236, 218–222 (1997)

    Article  PubMed  CAS  Google Scholar 

  15. Iwabuchi, K., Yamamura, S., Prinetti, A., Handa, K., Hakomori, S.: GM3-enriched microdomain involved in cell adhesion and signal transduction through carbohydrate–carbohydrate interaction in mouse melanoma B16 cells. J. Biol. Chem. 273, 9130–9138 (1998)

    Article  PubMed  CAS  Google Scholar 

  16. Todeschini, A.R., Dos Santos, J.N., Handa, K., Hakomori, S.: Ganglioside GM2-tetraspanin CD82 complex inhibits Met and its cross-talk with integrins, providing a basis for control of cell motility through glycosynapse. J. Biol. Chem. 282, 8123–8133 (2007)

    Article  PubMed  CAS  Google Scholar 

  17. Kawamoto, T., Sato, J.D., Le, A., Polikoff, J., Sato, G.H., Mendelsohn, J.: Growth stimulation of A431 cells by epidermal growth factor: identification of high-affinity receptors for epidermal growth factor by an anti-receptor monoclonal antibody. Proc. Natl. Acad. Sci. U S A 80, 1337–1341 (1983)

    Article  PubMed  CAS  Google Scholar 

  18. Ono, M., Handa, K., Sonnino, S., Withers, D.A., Nagai, H., Hakomori, S.: GM3 ganglioside inhibits CD9-facilitated haptotactic cell motility: co-expression of GM3 and CD9 is essential in down-regulation of tumor cell motility and malignancy. Biochemistry 40, 6414–6421 (2001)

    Article  PubMed  CAS  Google Scholar 

  19. Kawakami, Y., Kawakami, K., Steelant, W.F.A., Ono, M., Baek, R.C., Handa, K., Withers, D.A., Hakomori, S.: Tetraspanin CD9 is a “proteolipid”, and its interaction with a3 integrin in microdomain is promoted by GM3 ganglioside, leading to inhibition of laminin-5-dependent cell motility. J. Biol. Chem. 277, 34349–34358 (2002)

    Article  PubMed  CAS  Google Scholar 

  20. Mitsuzuka, K., Handa, K., Satoh, M., Arai, Y., Hakomori, S.: A specific microdomain (“glycosynapse 3”) controls phenotypic conversion and reversion of bladder cancer cells through GM3-mediated interaction of alpha3beta1 integrin with CD9. J. Biol. Chem. 280, 35545–35553 (2005)

    Article  PubMed  CAS  Google Scholar 

  21. Zhou, Q., Hakomori, S., Kitamura, K., Igarashi, Y.: GM3 directly inhibits tyrosine phosphorylation and de-N-acetyl-GM3 directly enhances serine phosphorylation of epidermal growth factor receptor, independently of receptor–receptor interaction. J. Biol. Chem. 269, 1959–1965 (1994)

    PubMed  CAS  Google Scholar 

  22. Bremer, E.G., Hakomori, S., Bowen-Pope, D.F., Raines, E.W., Ross, R.: Ganglioside-mediated modulation of cell growth, growth factor binding, and receptor phosphorylation. J. Biol. Chem. 259, 6818–6825 (1984)

    PubMed  CAS  Google Scholar 

  23. Yates, A.J., VanBrocklyn, J., Saqr, H.E., Guan, Z., Stokes, B.T., O’Dorisio, M.S.: Mechanisms through which gangliosides inhibit PDGF-stimulated mitogenesis in intact Swiss 3T3 cells: Receptor tyrosine phosphorylation, intracellular calcium, and receptor binding. Exp. Cell. Res. 204, 38–45 (1993)

    Article  PubMed  CAS  Google Scholar 

  24. Nojiri, H., Stroud, M.R., Hakomori, S.: A specific type of ganglioside as a modulator of insulin-dependent cell growth and insulin receptor tyrosine kinase activity: Possible association of ganglioside-induced inhibition of insulin receptor function and monocytic differentiation induction in HL60 cells. J. Biol. Chem. 266, 4531–4537 (1991)

    PubMed  CAS  Google Scholar 

  25. Tagami, S., Inokuchi, J., Kabayama, K., Yoshimura, H., Kitamura, F., Uemura, S., Ogawa, C., Ishii, A., Saito, M., Ohtsuka, Y., Sakaue, S., Igarashi, Y.: Ganglioside GM3 participates in the pathological conditions of insulin resistance. J. Biol. Chem. 277, 3085–3092 (2002)

    Article  PubMed  CAS  Google Scholar 

  26. Yamashita, T., Hashiramoto, A., Haluzik, M., Mizukami, H., Beck, S., Norton, A., Kono, M., Tsuji, S., Daniotti, J.L., Werth, N., Sandhoff, R., Sandhoff, K., Proia, R.L.: Enhanced insulin sensitivity in mice lacking GM3 ganglioside. Proc. Natl. Acad. Sci. U S A 100, 3445–3449 (2003)

    Article  PubMed  CAS  Google Scholar 

  27. Mutoh, T., Tokuda, A., Miyada, T., Hamaguchi, M., Fujiki, N.: Ganglioside GM1 binds to the Trk protein and regulates receptor function. Proc. Natl. Acad. Sci. U S A 92, 5087–5091 (1995)

    Article  PubMed  CAS  Google Scholar 

  28. Mutoh, T., Hamano, T., Yano, S., Koga, H., Yamamoto, H., Furukawa, K., Ledeen, R.W.: Stable transfection of GM1 synthase gene into GM1-deficient NG108-15 cells, CR-72 cells, rescues the responsiveness of Trk-neurotrophin receptor to its ligand, NGF. Neurochem. Res. 27, 801–806 (2002)

    Article  PubMed  CAS  Google Scholar 

  29. Sorice, M., Parolini, I., Sansolini, T., Garofalo, T., Dolo, V., Sargiacomo, M., Tai, T., Peschle, C., Torrisi, M.R., Pavan, A.: Evidence for the existence of ganglioside-enriched plasma membrane domains in human peripheral lymphocytes. J. Lipid. Res. 38, 969–980 (1997)

    PubMed  CAS  Google Scholar 

  30. Hakomori, S., Yamamura, S., Handa, K.: Signal transduction through glyco(sphingo)lipids: introduction and recent studies on glyco(sphingo)lipid-enriched microdomains. In: Ledeen, R.W., Hakomori, S., Yates, A.J., Schneider, J.S., Yu, R.K. (eds.) Sphingolipids as signaling modulators in the nervous system, Vol. 845, pp. 1–10. Annals of the NY Academy of Sciences. NY Academy of Sciences, New York, NY, (1998)

  31. Hakomori, S.: Cell adhesion/recognition and signal transduction through glycosphingolipid microdomain. Glycoconj. J. 17, 143–151 (2000)

    Article  PubMed  CAS  Google Scholar 

  32. Gourier, C., Pincet, F., Perez, E., Zhang, Y., Zhu, Z., Mallet, J.M., Sinay, P.: The natural LewisX-bearing lipids promote membrane adhesion: influence of ceramide on carbohydrate–carbohydrate recognition. Angew. Chem. Angew. Chem. Int. Ed. Engl. Suppl. 44, 1683–1687 (2005)

    Article  CAS  Google Scholar 

  33. Iwabuchi, K., Zhang, Y., Handa, K., Withers, D.A., Sinaÿ, P., Hakomori, S.: Reconstitution of membranes simulating “glycosignaling domain” and their susceptibility to lyso-GM3. J. Biol. Chem. 275, 15174–15181 (2000)

    Article  PubMed  CAS  Google Scholar 

  34. Lee, Y.C.: Biochemistry of carbohydrate–protein interaction. FASEB J. 6, 3193–3200 (1992)

    PubMed  CAS  Google Scholar 

  35. Bellezza, I, Bracarda, S, Caserta, C, Minelli, A: Targeting of EGFR tyrosine kinase by ZD1839 (“Iressa”) in androgen-responsive prostate cancer in vitro. Mol. Genet. Metab. 88, 114–122 (2006)

    Article  PubMed  CAS  Google Scholar 

  36. Sui, G., Bonde, P., Dhara, S., Broor, A., Wang, J., Marti, G.: Epidermal growth factor receptor and hedgehog signaling pathways are active in esophageal cancer cells from rat reflux model. J. Surg. Res. 134, 1–9 (2006)

    Article  PubMed  CAS  Google Scholar 

  37. Czito, B.G., Willett, C.G., Bendell, J.C., Morse, M.A., Tyler, D.S., Fernando, N.H., Mantyh, C.R., Blobe, G.C., Honeycutt, W., Yu, D., Clary, B.M., Pappas, T.N., Ludwig, K.A., Hurwitz, H.I.: increased toxicity with gefitinib, capecitabine, and radiation therapy in pancreatic and rectal cancer: phase I trial results. J. Clin. Oncol. 24, 656–662 (2006)

    Article  PubMed  CAS  Google Scholar 

  38. Reardon, D.A., Quinn, J.A., Vredenburgh, J.J., Gururangan, S., Friedman, A.H., Desjardins, A., Sathornsumetee, S., Herndon, J.E. 2nd, Dowell, J.M., McLendon, R.E., Provenzale, J.M., Sampson, J.H., Smith, R.P., Swaisland, A.J., Ochs, J.S., Lyons, P., Tourt_Uhlig, S., Bigner, D.D., Friedman, H.S., Rich, J.N.: Phase 1 trial of gefitinib plus sirolimus in adults with recurrent malignant glioma. Clin. Cancer. Res. 12, 860–868 (2006)

    Article  PubMed  CAS  Google Scholar 

  39. Magnani, JL: The discovery, biology, and drug development of sialyl Lea and sialyl Lex. Arch. Biochem. Biophys. 426, 122–131 (2004)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by NIH/ National Cancer Institute grant R01 CA080054 to SH.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kenichi Hatanaka or Sen-itiroh Hakomori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murozuka, Y., Watanabe, N., Hatanaka, K. et al. Lyso-GM3, its dimer, and multimer: their synthesis, and their effect on epidermal growth factor-induced receptor tyrosine kinase. Glycoconj J 24, 551–563 (2007). https://doi.org/10.1007/s10719-007-9051-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-007-9051-2

Keywords

Navigation