Advertisement

Glycoconjugate Journal

, Volume 25, Issue 1, pp 69–74 | Cite as

Surface plasmon resonance imaging for real-time, label-free analysis of protein interactions with carbohydrate microarrays

  • Rositsa Karamanska
  • Jonathan Clarke
  • Ola Blixt
  • James I. MacRae
  • Jiquan Q. Zhang
  • Paul R. Crocker
  • Nicolas Laurent
  • Adam Wright
  • Sabine L. Flitsch
  • David A. Russell
  • Robert A. FieldEmail author
Article

Abstract

Plant lectin recognition of glycans was evaluated by SPR imaging using a model array of N-biotinylated aminoethyl glycosides of β-d-glucose (negative control), α-d-mannose (conA-responsive), β-d-galactose (RCA120-responsive) and N-acetyl-β-d-glucosamine (WGA-responsive) printed onto neutravidin-coated gold chips. Selective recognition of the cognate ligand was observed when RCA120 was passed over the array surface. Limited or no binding was observed for the non-cognate ligands. SPR imaging of an array of 40 sialylated and unsialylated glycans established the binding preference of hSiglec7 for α2-8-linked disialic acid structures over α2-6-sialyl-LacNAcs, which in turn were recognized and bound with greater affinity than α2-3-sialyl-LacNAcs. Affinity binding data could be obtained with as little as 10–20 μg of lectin per experiment. The SPR imaging technique was also able to establish selective binding to the preferred glycan ligand when analyzing crude culture supernatant containing 10–20 μg of recombinant hSiglec7-Fc. Our results show that SPR imaging provides results that are in agreement with those obtained from fluorescence based carbohydrate arrays but with the added advantage of label-free analysis.

Keywords

Carbohydrate array Surface plasmon resonance (SPR) imaging Label-free detection Plant lectin Siglec 7 

Abbreviations

ConA

concanavalin A

RCA120

the 120 kDa component of Ricinus communis agglutinin

WGA

wheat germ agglutinin

Notes

Acknowledgements

This research was supported by Basic Technology Grant GR/S79268/02 from Research Councils UK (http://www.glycoarrays.org.uk/). Many of the biotinylated carbohydrate derivatives used in this study were prepared by the Carbohydrate Synthesis Core of the Consortium for Functional Glycomics (http://www.functionalglycomics.org/fg/) funded by the National Institute of General Medical Sciences grant GM62116. We thank colleagues from the John Innes Genome Laboratory for invaluable support.

References

  1. 1.
    Varki, A.: Glycobiology 3, 97–130 (1993)PubMedCrossRefGoogle Scholar
  2. 2.
    Feizi, T., Chai, W.G.: Nature Rev. Mol. Cell Biol. 5, 582–588 (2004)CrossRefGoogle Scholar
  3. 3.
    Shin, I., Park, S., Lee, M.R.: Chem. Eur. J. 11, 2894–2901 (2005)CrossRefGoogle Scholar
  4. 4.
    Paulson, J.C., Blixt, O., Collins, B.E.: Nature Chem. Biol. 2, 238–248 (2006)CrossRefGoogle Scholar
  5. 5.
    Culf, A.S., Cuperlovic-Culf, M., Ouellette, R.J.: Omics J. Integ. Biol. 10, 289–310 (2006)CrossRefGoogle Scholar
  6. 6.
    Dyukova, V.I., Shilova, N.V., Galanina, O.E., Rubina, A.Y., Bovin, N.V.: Biochim. Biophys. Acta 1760, 603–609 (2006)PubMedGoogle Scholar
  7. 7.
    Shinohara, Y., Hasegawa, Y., Kaku, H., Shibuya, N.: Glycobiology 7, 1201–1208 (1997)PubMedCrossRefGoogle Scholar
  8. 8.
    Haseley, S.R., Kamerling, J.P., Vliegenthart, J.F.G.: Top. Curr. Chem. 218, 93–114 (2002)CrossRefGoogle Scholar
  9. 9.
    Duverger, E., Frison, N., Roche, A.C., Monsigny, M.: Biochimie 85, 167–179 (2003)PubMedCrossRefGoogle Scholar
  10. 10.
    Suda, Y., Arano, A., Fukui, Y., Koshida, S., Wakao, M., Nishimura, T., Kusumoto, S., Sobel, M.: Bioconj. Chem. 17, 1125–1135 (2006)CrossRefGoogle Scholar
  11. 11.
    Wear, M.A., Walkinshaw, M.D.: Analytical Biochem. 359, 285–287 (2006)CrossRefGoogle Scholar
  12. 12.
    Smith, E.A., Thomas, W.D., Kiessling, L.L., Corn, R.M.: J. Am. Chem. Soc. 125, 6140–6148 (2003)PubMedCrossRefGoogle Scholar
  13. 13.
    Kanda, V., Kitov, P., Bundle, D.R., McDermott, M.T.: Analytical Chem. 77, 7497–7504 (2005)CrossRefGoogle Scholar
  14. 14.
    Rich, R.L., Myszka, D.G.: Analytical Biochem. 361, 1–6 (2007)CrossRefGoogle Scholar
  15. 15.
    Boozer, C., Kim, G., Cong, S.X., Guan, H.W., Londergan, T.: Curr. Opin. Biotechnol. 17, 400–405 (2006)PubMedCrossRefGoogle Scholar
  16. 16.
    Cooper, M.A.: Drug Discov. Today 11, 1061–1067 (2006)PubMedCrossRefGoogle Scholar
  17. 17.
    Wassaf, D., Kuang, G.N., Kopacz, K., Wu, Q.L., Nguyen, Q., Toews, M., Cosic, J., Jacques, J., Wiltshire, S., Lambert, J., Pazmany, C.C., Hogan, S., Ladner, R.C., Nixon, A.E., Sexton, D.J.: Analytical Biochem. 351, 241–253 (2006)CrossRefGoogle Scholar
  18. 18.
    Dahmen, J., Frejd, T., Gronberg, G., Magnusson, G., Noori, G.: Carbohydr. Res. 111, C1–C4 (1982)CrossRefGoogle Scholar
  19. 19.
    Dahmen, J., Frejd, T., Gronberg, G., Lave, T., Magnusson, G., Noori, G.: Carbohydr. Res. 116, 303–307 (1983)CrossRefGoogle Scholar
  20. 20.
    Eklind, K., Gustafsson, R., Tiden, A.K., Norberg, T., Aberg, P.M.: J. Carbohydr. Chem. 15, 1161–1178 (1996)CrossRefGoogle Scholar
  21. 21.
    Zhang, J.Q., Nicoll, G., Jones, C., Crocker, P.R.: J. Biol. Chem. 275, 22121–22126 (2000)PubMedCrossRefGoogle Scholar
  22. 22.
    Jones, C., Virji, M., Crocker, P.R.: Mol. Microbiol. 49, 1213–1225 (2003)PubMedCrossRefGoogle Scholar
  23. 23.
    Campanero-Rhodes, M.A., Childs, R.A., Kiso, M., Komba, S., Le Narvor, C., Warren, J., Otto, D., Crocker, P.R., Feizi, T.: Biochem. Biophys. Res. Commun. 344, 1141–1146 (2006)PubMedCrossRefGoogle Scholar
  24. 24.
    Avril, T., Wagner, E.R., Willison, H.J., Crocker, P.R.: Infect. Immun. 74, 4133–4141 (2006)PubMedCrossRefGoogle Scholar
  25. 25.
    Manimala, J.C., Roach, T.A., Li, Z.T., Gildersleeve, J.C.: Angew. Chem. Intl. Edn. 45, 3607–3610 (2006)CrossRefGoogle Scholar
  26. 26.
    Angata, T; Varki, A.: Glycobiology 10, 431–438 (2000)PubMedCrossRefGoogle Scholar
  27. 27.
    Crocker, P.R., Paulson, J.C., Varki, A.: Nature Rev. Immunol. 7, 255–266 (2007)CrossRefGoogle Scholar
  28. 28.
  29. 29.
    Zhang, J.Q., Biedermann, B., Nitschke, L., Crocker, P.R.: Eur. J. Immunol. 34, 1175–1184 (2004)PubMedCrossRefGoogle Scholar
  30. 30.
    Swaminathan, C.P., Wais, N., Vyas, V.V., Velikovsky, C.A., Moretta, A., Moretta, L., Biassoni, R., Mariuzza, R.A., Dimasi, N.: ChemBioChem. 5, 1571–1575 (2004)PubMedCrossRefGoogle Scholar
  31. 31.
    Attrill, H., Imamura, A., Sharma, R.S., Kiso, M., Crocker, P.R., van Aalten, D.M.F.: J. Biol. Chem. 281, 32774–32783 (2006)PubMedCrossRefGoogle Scholar
  32. 32.
    Kyo, M., Usui-Aoki, K., Koga, H.: Analytical Chem. 77, 7115–7121 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Rositsa Karamanska
    • 1
    • 2
  • Jonathan Clarke
    • 3
  • Ola Blixt
    • 4
  • James I. MacRae
    • 5
  • Jiquan Q. Zhang
    • 5
  • Paul R. Crocker
    • 5
  • Nicolas Laurent
    • 6
  • Adam Wright
    • 6
  • Sabine L. Flitsch
    • 6
  • David A. Russell
    • 1
  • Robert A. Field
    • 1
    • 2
    Email author
  1. 1.School of Chemical Sciences and PharmacyUniversity of East AngliaNorwichUK
  2. 2.Department of Biological ChemistryJohn Innes CentreNorwichUK
  3. 3.John Innes Genome LaboratoryJohn Innes CentreNorwichUK
  4. 4.Department of Molecular BiologyGlycan Array Synthesis Core-D, Consortium for Functional Glycomics, The Scripps Research InstituteLa JollaUSA
  5. 5.School of Life SciencesUniversity of DundeeDundeeUK
  6. 6.School of ChemistryManchester Interdisciplinary BiocentreManchesterUK

Personalised recommendations