Skip to main content
Log in

Changes in GM1 ganglioside content and localization in cholestatic rat liver

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

(Glyco)sphingolipids (GSL) are believed to protect the cell against harmful environmental factors by increasing the rigidity of plasma membrane. Marked decrease of membrane fluidity in cholestatic hepatocytes was described but the role of GSL therein has not been investigated so far. In this study, localization in hepatocytes of a representative of GSL, the GM1 ganglioside, was compared between of rats with cholestasis induced by 17α-ethinylestradiol (EE) and vehicle propanediol treated or untreated animals. GM1 was monitored by histochemical reaction employing cholera toxin B-subunit. Our findings in normal rat liver tissue showed that GM1 was localized in sinusoidal and canalicular hepatocyte membranes in both peripheral and intermediate zones of the hepatic lobules, and was nearly absent in central zones. On the contrary, in EE-treated animals GM1 was also expressed in central lobular zones. Moreover, detailed densitometry analysis at high magnification showed greater difference of GM1 expression between sinusoidal surface areas and areas of adjacent cytoplasm, caused as well by increased sinusoidal staining in central lobular zone as by decreased staining in cytoplasm in peripheral zone. These differences correlated with serum bile acids as documented by linear regression analyses. Both GM1 content and mRNA corresponding to GM1-synthase remained unchanged in livers; the enhanced expression of GM1 at sinusoidal membrane thus seems to be due to re-distribution of cellular GM1 at limited biosynthesis and could be responsible for protection of hepatocytes against harmful effects of bile acids accumulated during cholestasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ALP:

alkaline phosphatase

BSA:

bovine serum albumin

EE:

17α-ethinylestradiol

PD:

1,2-propanediol

GSL:

glycosphingolipids

PBS:

phosphate buffer saline

TBA:

total bile acids

 :

Ganglioside symbols, according to Svennerholm [26, 27], with IUPAC-IUB [28] nomenclature in parentheses

GM3:

(II3NeuAc-LacCer)

GM2:

(II3NeuAc-GgOse3Cer)

GM1:

(II3NeuAc-GgOse4Cer)

GD3:

(II3(NeuAc)2-Lac-Cer)

GD2:

(II3(NeuAc)2-GgOse3Cer)

GD1a:

(IV3NeuAc,II3NeuAcGgOse4Cer)

GD1b:

(II3(NeuAc)2-GgOse4Cer)

GT1b:

(IV3NeuAc,II3(NeuAc)2-GgOse4Cer)

References

  1. van Meer, G., Lisman, Q.: Sphingolipid transport: rafts and translocators. J. Biol. Chem. 277, 25855–25858 (2002)

    Article  PubMed  CAS  Google Scholar 

  2. Hakomori, S.: Structure, organization, and function of glycosphingolipids in membrane. Curr. Opin. Hematol. 10, 16–24 (2003)

    Article  PubMed  CAS  Google Scholar 

  3. Slimane, T.A., Hoekstra, D.: Sphingolipid trafficking and protein sorting in epithelial cells. FEBS Lett. 529, 54–59 (2002)

    Article  Google Scholar 

  4. van Ijzendoorn, S.C.D., Zegers, M.M.P., Kok, J.W., Hoekstra, D.: Segregation of glucosylceramide and sphingomyelin occurs in the apical to basolateral transcytotic route in HepG2 cells. J. Cell Biol. 137, 347–357 (1997)

    Article  PubMed  Google Scholar 

  5. Rodriguez-Garay, E.A.: Cholestasis: human disease and experimental animal models. Ann. Hepatol. 2, 150–158 (2003)

    PubMed  Google Scholar 

  6. Balistreri, W.F., Leslie, M.H., Cooper, R.A.: Increased cholesterol and decreased fluidity of red cell membranes (spur cell anaemia) in progressive intrahepatic cholestasis. Pediatrics 67, 461–466 (1981)

    PubMed  CAS  Google Scholar 

  7. Smith, D.J., Gordon, E.R.: Role of liver plasma membrane fluidity in the pathogenesis of estrogen-induced cholestasis. J. Lab. Clin. Med. 112, 679–685 (1988)

    PubMed  CAS  Google Scholar 

  8. Rosario, J., Sutherland, E., Zaccaro, L., Simon, R.F.: Estradiol administration alters liver sinusoidal membrane fluidity and protein composition. Biochemistry 27, 3939–3946 (1988)

    Article  PubMed  CAS  Google Scholar 

  9. Vu, D.D., Tuchweber, B., Raymond, P., Yousef, I.M.: Tight junction permeability and liver membrane fluidity in lithocholate induced cholestasis. Exp. Mol. Pathol. 57, 47–61 (1992)

    Article  PubMed  CAS  Google Scholar 

  10. Hyogo, H., Tazuma, S., Kajiyama, G.: Transcytotic vesicle fusion is reduced in cholestatic rats: redistribution of phospholipids in the canalicular membrane. Dig. Dis. Sci. 44, 1662–1668 (1999)

    Article  PubMed  CAS  Google Scholar 

  11. Hyogo, H., Tazuma, S., Kajiyama, G.: Biliary excretory function is regulated by canalicular membrane fluidity associated with phospholipid fatty acyl chains in the bilayer: implications for the pathophysiology of cholestasis. J. Gastroenterol. Hepatol. 15, 887–894 (2000)

    Article  PubMed  CAS  Google Scholar 

  12. Majer, F., Trnka, L., Vítek, L., Jirkovská, M., Mareček, Z., Šmíd, F.: Estrogen-induced cholestasis results in a dramatic increase of b-series gangliosides in the rat liver. Biomed. Chromatogr. (accepted for publication)

  13. Yu, R.K., Ledeen, R.W.: Gangliosides of human, bovine, and rabbit plasma. J. Lipid Res. 13, 680–686 (1972)

    PubMed  CAS  Google Scholar 

  14. Lojda, Z., Gossrau, R., Schiebler, T.H.: Enzyme Histochemistry. A Laboratory Manual, p. 67, Springer, Berlin Heidelberg New York (1979)

    Google Scholar 

  15. Wu, G., Ledeen, R.K.: Quantification of gangliotetraose gangliosides with cholera toxin. Anal. Biochem. 173, 368–375 (1988)

    Article  PubMed  CAS  Google Scholar 

  16. Hamilton, P.W.: Designing a morphometric study. In: Hamilton, P.W., Allen, D.C. (eds) Quantitative Clinical Pathology. Blackwell Science, Cambridge, MA (1995)

    Google Scholar 

  17. Arrese, M., Pizzaro, M., Solís, N., Koenig, C., Accatino, L.: Enhanced biliary excretion of canalicular membrane enzymes in ethinylestradiol-induced cholestasis. Effects of ursodeoxycholic acid administration. Biochem. Pharmacol. 50, 1223–1232 (1995)

    Article  PubMed  CAS  Google Scholar 

  18. Koudstaal, J., Runsink, A.P., van der Sandt, M., Hardonk, M.J.: Correlation between serum alkaline phosphatase and localization of alkaline phosphatase in the liver. Acta Histochem. Suppl. 14, 129–138 (1975)

    PubMed  CAS  Google Scholar 

  19. Parton, R.G.: Ultrastructural localisation of gangliosides. GM1 is localised in caveolae. J. Histochem. Cytochem. 42, 155–166 (1994)

    PubMed  CAS  Google Scholar 

  20. Pascher, I.: Molecular arrangements in sphingolipids. Conformation and hydrogen binding of ceramide and their implication on membrane stability and permeability. Biochim. Biophys. Acta 455, 433–451 (1976)

    Article  PubMed  CAS  Google Scholar 

  21. Harris, P.L., Thornton, E.R.: Carbon-13 and proton nuclear magnetic resonance of gangliosides. J. Am. Chem. Soc. 100, 6738–6745 (1978)

    Article  CAS  Google Scholar 

  22. Pascher, I., Lundmark, M., Nyholm, P.G., Sundell, S.: Crystal structures of membrane lipids. Biochim. Biophys. Acta 1113, 339–373 (1992)

    PubMed  CAS  Google Scholar 

  23. Czarniecki, M.F., Thornton, E.R.: Carbon-13 nuclear magnetic resonance spin-lattice relaxation in the N-acylneuraminic acid. Probes for internal dynamics and conformational analysis. J. Am. Chem. Soc. 99, 8273–8278 (1977)

    Article  CAS  Google Scholar 

  24. Tettamanti, G., Masserini, M., Giuliani, A., Pagani, A.: Structure and function of gangliosides. Ann 1st Super Sanita 24, 23–31 (1988)

    CAS  Google Scholar 

  25. Bertoli, E., Masserini, M., Sonino, S., Ghidoni, R., Cestaro, B., Tettamanti, G.: Electron paramagnetic resonance studies on the fluidity and surface dynamics of egg phosphatidylcholine vesicles containing ganglioside. Biochim. Biophys. Acta 467, 196–202 (1981)

    Google Scholar 

  26. Svennerholm, L.: Chromatographic separation of human brain gangliosides. J Neurochem. 10, 613–623 (1963)

    Article  PubMed  CAS  Google Scholar 

  27. Svennerholm, L.: Designation and schematic structure of gangliosides and allied glycosphingolipids. Prog. Brain Res. 101, XI–XIV (1994)

    Article  PubMed  CAS  Google Scholar 

  28. IUPAC-IUB Commission on Biochemical Nomenclature. The nomenclature of lipids. Recommendations. Lipids 12, 455–468 (1977)

    Google Scholar 

Download references

Acknowledgements

We thank Marie Zadinová and Martin Leníček for their help with animal experiments and Alena Veselá and Ladislav Trnka for their excellent technical assistance. This work was supported by the Internal Grant Agency of the Ministry of Health of the Czech Republic, Project No. 8079-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to František Šmíd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jirkovská, M., Majer, F., Šmídová, J. et al. Changes in GM1 ganglioside content and localization in cholestatic rat liver. Glycoconj J 24, 231–241 (2007). https://doi.org/10.1007/s10719-007-9030-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-007-9030-7

Keywords

Navigation