Skip to main content

Advertisement

Log in

Structure determination of a sulfated N-glycans, candidate for a precursor of the selectin ligand in bovine lung

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

To clarify the structure of non-sialic acid anionic residue on N-glycans in the mammalian tissues, we have isolated sialidase-resistant anionic residue on N-glycans from bovine lung. Analyses by partial acid hydrolysis and glycosidase digestions combined with a two-dimensional HPLC mapping method revealed that the major sialidase-resistant anionic N-glycan had a fucosylbianntenary core structure. The anionic residue was identified as a sulfate ester by methanolysis, anion-exchange chromatography, and mass spectrometry. The linkage position of the sulfate ester was the 6-position of the GlcNAc residue on the Manα1-6 branch. This conclusion was based on the results of glycosidase digestions followed by two-dimensional HPLC mapping. Furthermore, the disialylated form of this sulfated glycan was dominant, and no asialo form was detected. The structure of the major anionic N-glycan prepared from bovine lung and having a sulfate was proposed to be the pyridylamino derivative of Siaα2-3Gαlβ1-4(HSO3-6)GlcNAcβ1-2Manα1-6(Siaα2-3Galβ1-4GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4(Fucα1-6)GlcNAc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

HPLC:

high performance liquid chromatography

MALDI:

matrix assisted laser desorption ionization

MS:

mass spectrometry

PA:

pyridylamino

TOF:

time of flight

References

  1. Kornfeld, R., Kornfeld, S.: Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54, 631–664 (1985)

    Article  PubMed  CAS  Google Scholar 

  2. Kobata, A., Takasaki, S.: In: Fukuda, M. (ed.) Cell Surface Carbohydrates and Cell Development, pp. 1–24. CRC Press, Boca Raton, FL (1992)

  3. Kornfeld, S., Mellman, I.: The biogenesis of lysosomes. Annu. Rev. Cell Biol. 5, 483–525 (1989)

    Article  PubMed  CAS  Google Scholar 

  4. Varki, A., Kornfeld, S.: Structural studies of phosphorylated high mannose-type oligosaccharides. J. Biol. Chem. 255, 10847–10858 (1980)

    PubMed  CAS  Google Scholar 

  5. Freeze, H.H., Yeh, R., Miller, A.L., Kornfeld, S.: Structural analysis of the asparagine-linked oligosaccharides from three lysosomal enzymes of Dictyostelium discoideum. Evidence for an unusual acid-stable phosphodiester. J. Biol. Chem. 258, 14874–14879 (1983)

    PubMed  CAS  Google Scholar 

  6. Yamashita, K., Ueda, I., Kobata, A.: Sulfated asparagine-linked sugar chains of hen egg albumin. J. Biol. Chem. 258, 14144–14147 (1983)

    PubMed  CAS  Google Scholar 

  7. Freeze, H.H., Wolgast, D.: Structural analysis of N-linked oligosaccharides from glycoproteins secreted by Dictyostelium discoideum. Identification of mannose 6-sulfate. J. Biol. Chem. 261, 127–134 (1986)

    PubMed  CAS  Google Scholar 

  8. Edge, A.S., Spiro, R.G.: Presence of sulfate in N-glycosidically linked carbohydrate units of calf thyroid plasma membrane glycoproteins. J. Biol. Chem. 259, 4710–4713 (1984)

    PubMed  CAS  Google Scholar 

  9. Green, E.D., Baenziger, J.U.: Asparagine-linked oligosaccharides on lutropin, follitropin, and thyrotropin. I. Structural elucidation of the sulfated and sialylated oligosaccharides on bovine, ovine, and human pituitary glycoprotein hormones. J. Biol. Chem. 263, 25–35 (1988)

    PubMed  CAS  Google Scholar 

  10. Roux, L., Holojda, S., Sundblad, G., Freeze, H.H., Varki, A.: Sulfated N-linked oligosaccharides in mammalian cells. I. Complex-type chains with sialic acids and O-sulfate esters. J. Biol. Chem. 263, 8879–8889 (1988)

    PubMed  CAS  Google Scholar 

  11. Sundblad, G., Holojda, S., Roux, L., Varki, A., Freeze, H.H.: Sulfated N-linked oligosaccharides in mammalian cells. II. Identification of glycosaminoglycan-like chains attached to complex-type glycans. J. Biol. Chem. 263, 8890–8896 (1988)

    PubMed  CAS  Google Scholar 

  12. Norgard-Sumnicht, K.E., Roux, L., Toomre, D.K., Manzi, A., Freeze, H.H., Varki, A.: Unusual anionic N-linked oligosaccharides from bovine lung. J. Biol. Chem. 270, 27634–27645 (1995)

    Article  PubMed  CAS  Google Scholar 

  13. Gowda, D.C., Margolis, R.U., Margolis, R.K.: Presence of the HNK-1 epitope on poly(N-acetyllactosaminyl) oligosaccharides and identification of multiple core proteins in the chondroitin sulfate proteoglycans of brain. Biochemistry 28, 4468–4474 (1989)

    Article  PubMed  CAS  Google Scholar 

  14. Mikol, D.D., Gulcher, J.R., Stefansson, K.: The oligodendrocyte-myelin glycoprotein belongs to a distinct family of proteins and contains the HNK-1 carbohydrate. J. Cell. Biol. 110, 471–479 (1990)

    Article  PubMed  CAS  Google Scholar 

  15. Takasaki, S., Mizuochi, T., Kobata, A.: Hydrazinolysis of asparagine-linked sugar chains to produce free oligosaccharides. Methods Enzymol. 83, 263–268 (1982)

    Article  PubMed  CAS  Google Scholar 

  16. Kuraya, N., Hase, S.: Release of O-linked sugar chains from glycoproteins with anhydrous hydrazine and pyridylamination of the sugar chains with improved reaction conditions. J. Biochem. 112, 122–126 (1992)

    PubMed  CAS  Google Scholar 

  17. Hase, S., Ikenaka, T., Matsushima, Y.: Structure analyses of oligosaccharides by tagging of the reducing end sugars with a fluorescent compound. Biochem. Biophys. Res. Commun. 85, 257–263 (1978)

    Article  PubMed  CAS  Google Scholar 

  18. Tokugawa, K., Oguri, S., Takeuchi, M.: Large scale preparation of PA-oligosaccharides from glycoproteins using an improved extraction method. Glycoconjugate J. 13, 53–56 (1996)

    Article  CAS  Google Scholar 

  19. Hase, S., Hatanaka, K., Ochiai, K., Shimizu, H.: Improved method for the component sugar analysis of glycoproteins by pyridylamino sugars purified with immobilized boronic acid. Biosci. Biotechnol. Biochem. 56, 1676–1677 (1992)

    Article  CAS  Google Scholar 

  20. Makino, Y., Omichi, K., Hase, S.: Analysis of oligosaccharide structures from the reducing end terminal by combining partial acid hydrolysis and a two-dimensional sugar map. Anal. Biochem. 264, 172–179 (1998)

    Article  PubMed  CAS  Google Scholar 

  21. Yanagida, K., Ogawa, H., Omichi, K., Hase, S.: Introduction of a new scale into reversed-phase high-performance liquid chromatography of pyridylamino sugar chains for structural assignment. J. Chromatogr. A. 800, 187–198 (1998)

    Article  PubMed  CAS  Google Scholar 

  22. Suzuki, J., Kondo, A., Kato, I., Hase, S., Ikenaka, T.: Analysis by High-performance anion-exchange chromatography of component sugars as their fluorescent pyridylamino derivatives. Agric. Biol. Chem. 55, 283–284 (1991)

    CAS  Google Scholar 

  23. Slomiany, A., Kojima, K., Banas-Gruszka, Z., Slomiany, B.L.: Structure of a novel sulfated sialo glycosphingolipid from bovine gastric mucosa. Biochem. Biophys. Res. Commun. 100, 778–784 (1981)

    Article  PubMed  CAS  Google Scholar 

  24. Sugahara, K., Masuda, M., Yamada, S., Harada, T., Yoshida, K., Yamashita, I.: In: Sharon, N., Lis, H., Duskin, D., Kahane, I. (eds.) Proceedings of the 10th International Symposium on Glycoconjugates Sept. 10, 1989, pp. 322, (Jerusalem, Israel, 1989)

  25. Hemmerich, S., Leffler, H., Rosen, S.D.: Structure of the O-Glycans in GlyCAM-1, an endothelial-derived ligand for L-selectin. J. Biol. Chem. 270, 12035–12047 (1995)

    Article  PubMed  CAS  Google Scholar 

  26. Kresse, H., Fuchs, W., Glossl, J., Holtfrerich, D., Gilberg, W.: Liberation of N-acetylglucosamine-6-sulfate by human β-N-acetylhexosaminidase A. J. Biol. Chem. 256, 12926–12932 (1981)

    PubMed  CAS  Google Scholar 

  27. Srikrishna, G., Toomre, D.K., Manzi, A.: Panneerselvam K, Freeze HH, Varki A, Varki, NM, A novel anionic modification of N-glycans on mammalian endothelial cells is recognized by activated neutrophils and modulates acute inflammatory responses. J. Immunol. 166, 624–632 (2001)

    PubMed  CAS  Google Scholar 

  28. Brenner, W., Langer, P., Oesch, F., Edgell, C.J., Wieser, R.J.: Tumor cell-endothelium adhesion in an artificial venule. Anal. Biochem. 225, 213–219 (1995)

    Article  PubMed  CAS  Google Scholar 

  29. Hemmerich, S., Rosen, S.D.: 6′-sulfated sialyl Lewis x is a major capping group of GlyCAM-1, Bio chemistry 33, 4830–4835 (1994)

    Article  PubMed  CAS  Google Scholar 

  30. Mitsuoka, C., Kawakami-Kimura, N., Kasugai-Sawada, M., Hiraiwa, N., Toda, K., Ishida, H., Kiso, M., Hasegawa, A., Kannagi, R.: Sulfated sialyl Lewis x, the putative L-selectin ligand, detected on endothelial cells of high endothelial venules by a distinct set of anti-sialyl Lewis X antibodies. Biochem. Biophys. Res. Commun. 230, 546–551 (1997)

    Article  PubMed  CAS  Google Scholar 

  31. Mitsuoka, C., Sawada-Kasugai, M., Ando-Furui, K., Izawa, M., Nakanishi, H., Nakamura, S., Ishida, H., Kiso, M., Kannagi, R.: Identification of a major carbohydrate capping group of the L-selectin ligand on high endothelial venules in human lymph nodes as 6-sulfo sialyl Lewis x. J. Biol. Chem. 273, 11225–11233 (1998)

    Article  PubMed  CAS  Google Scholar 

  32. Sasaki, K., Kurata, K., Funayama, K., Nagata, M., Watanabe, E., Ohta, S., Hanai, N., Nishi, T.: Expression cloning of a novel α1,3-fucosyltransferase that is involved in biosynthesis of the sialyl Lewis x carbohydrate determinants in leukocytes. J. Biol. Chem. 269, 14730–14737 (1994)

    PubMed  CAS  Google Scholar 

  33. Natsuka, S., Gersten, K.M., Zenita, K., Kannagi, R., Lowe, J.B.: Molecular cloning of a cDNA encoding a novel human leukocyte α-1,3-fucosyltransferase capable of synthesizing the sialyl Lewis x determinant. J. Biol. Chem. 269, 16789–16794 (1994)

    PubMed  CAS  Google Scholar 

  34. Smith, P.L., Gersten, K.M., Petryniak, B., Kelly, R.J., Rogers, C., Natsuka, Y., Alford, J.A. 3rd, Scheidegger, E.P., Natsuka, S., Lowe, J.B.: Expression of the α(1,3)fucosyltransferase Fuc-TVII in lymphoid aggregate high endothelial venules correlates with expression of L-selectin ligands. J. Biol. Chem. 271, 8250–8259 (1996)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant-in-aid from the Japan Health Science Foundation and from the 21st Century COE (Creation of Integrated EcoChemistry) and Protein 3000 programs of the Ministry of Education, Science, Sports, and Culture of Japan for S. H., and CREST of the Japan Science and Technology Agency for S. N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumihiro Hase.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murakami, T., Natsuka, S., Nakakita, Si. et al. Structure determination of a sulfated N-glycans, candidate for a precursor of the selectin ligand in bovine lung. Glycoconj J 24, 195–206 (2007). https://doi.org/10.1007/s10719-006-9026-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-006-9026-8

Keywords

Navigation