Structure, function and evolution of the hemagglutinin-esterase proteins of corona- and toroviruses

Abstract

Virus attachment to host cells is mediated by dedicated virion proteins, which specifically recognize one or, at most, a limited number of cell surface molecules. Receptor binding often involves protein-protein interactions, but carbohydrates may serve as receptor determinants as well. In fact, many different viruses use members of the sialic acid family either as their main receptor or as an initial attachment factor. Sialic acids (Sias) are 9-carbon negatively-charged monosaccharides commonly occurring as terminal residues of glycoconjugates. They come in a large variety and are differentially expressed in cells and tissues. By targeting specific Sia subtypes, viruses achieve host cell selectivity, but only to a certain extent. The Sia of choice might still be abundantly present on non-cell associated molecules, on non-target cells (including cells already infected) and even on virus particles themselves. This poses a hazard, as high-affinity virion binding to any of such “false'' receptors would result in loss of infectivity. Some enveloped RNA viruses deal with this problem by encoding virion-associated receptor-destroying enzymes (RDEs). These enzymes make the attachment to Sia reversible, thus providing the virus with an escape ticket. RDEs occur in two types: neuraminidases and sialate-O-acetylesterases. The latter, originally discovered in influenza C virus, are also found in certain nidoviruses, namely in group 2 coronaviruses and in toroviruses, as well as in infectious salmon anemia virus, an orthomyxovirus of teleosts. Here, the structure, function and evolution of viral sialate-O-acetylesterases is reviewed with main focus on the hemagglutinin-esterases of nidoviruses.

References

  1. 1.

    Angata, T., Varki, A.: Chemical diversity in the sialic acids and related alpha-keto acids: An evolutionary perspective. Chem. Rev. 102, 439–69 (2002)

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Schauer, R., Kamerling, J.P.: Chemistry, biochemistry and biology of sialic acids. in J. Montreuil, J.F.G. Vliegenthart, H. Schachter, (Eds.), Glycoproteins II, Elsevier Science, 1997, pp. 243– 402.

  3. 3.

    Schauer, R.: Sialic acids: Fascinating sugars in higher animals and man. Zoology 107, 49–64 (2004)

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Herrler, G., Klenk, H.D.: Structure and function of the HEF glycoprotein of influenza C virus. Adv Virus Res 40, 213–34 (1991)

    CAS  PubMed  Google Scholar 

  5. 5.

    Brian, D.A., Hogue, B.G., Kienzle, T.E.: The coronavirus hemagglutinin esterase glycoprotein. in: S.G. Siddell, (Eds.), The Coronaviridae Plenum Press, New York, 1995, pp. 165–179.

    Google Scholar 

  6. 6.

    Hirst, G.K.: Adsorption of influenza hemagglutinins and virus by red blood cells. J. Exp. Med. 76, 195–209 (1942)

    Article  Google Scholar 

  7. 7.

    Hirst, G.K.: The agglutination of red cells by allantoic fluid of chick embryos infected with influenza virus. Science 94, 22–23 (1941)

    Google Scholar 

  8. 8.

    Hirst, G.K.: Receptor destruction by viruses of the mumps-NDV-influenza group. J. Exp. Med. 91, 161–75 (1950)

    CAS  PubMed  Google Scholar 

  9. 9.

    Klenk, E., Faillard, H., Lempfrid, H.: Über die enzymatische Wirkung von Influenzavirus. Hoppe. Seylers. Z. Physiol. Chem. 301, 235–46 (1955)

    CAS  PubMed  Google Scholar 

  10. 10.

    Gottschalk, A.: Neuraminidase: The specific enzyme of influenza virus and Vibrio cholerae. Biochim. Biophys. Acta. 23., 645–646 (1957)

    Article  PubMed  Google Scholar 

  11. 11.

    Hirst, G.K.: The relationship of the receptors of a new strain of virus to those of the mumps-NDV-influenza group. J. Exp. Med. 91, 177–84 (1950)

    CAS  PubMed  Google Scholar 

  12. 12.

    Herrler, G., Rott, R., Klenk, H.D.: Neuraminic acid is involved in the binding of influenza C virus to erythrocytes. Virology 141, 144–7 (1985)

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Kitame, F., Nakamura, K., Saito, A., Sinohara, H., Homma, M.: Isolation and characterization of influenza C virus inhibitor in rat serum. Virus. Res. 3, 231–44 (1985)

    CAS  PubMed  Google Scholar 

  14. 14.

    Kendal, A.P.: A comparison of “influenza C” with prototype myxoviruses: Receptor-destroycing activity (neuraminidase) and structural polypeptides. Virology 65, 87–99 (1975)

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Nerome, K., Ishida, M., Nakayama, M.: Absence of neuraminidase from influenza C virus. Arch. Virol. 50, 241–4 (1976)

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Herrler, G., Rott, R., Klenk, H.D., Müller, H.P., Shukla, A.K., Schauer, R.: The receptor-destroying enzyme of influenza C virus is neuraminate-O-acetylesterase. EMBO. J. 4, 1503–6 (1985)

    CAS  PubMed  Google Scholar 

  17. 17.

    Rogers, G.N., Herrler, G., Paulson, J.C., Klenk, H.D.: Influenza C virus uses 9-O-acetyl-N-acetylneuraminic acid as a high affinity receptor determinant for attachment to cells. J. Biol. Chem. 261, 5947–51 (1986)

    CAS  PubMed  Google Scholar 

  18. 18.

    Herrler, G., Klenk, H.D.: The surface receptor is a major determinant of the cell tropism of influenza C virus. Virology 159, 102–8 (1987)

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Schauer, R., Reuter, G., Stoll, S.: Posadas del Rio F, Herrler G, Klenk HD, Isolation and characterization of sialate 9(4)-O-acetylesterase from influenza C virus. Biol. Chem. Hoppe. Seyler. 369, 1121–30 (1988)

    CAS  PubMed  Google Scholar 

  20. 20.

    Lamb, R.A., Krug, R.M.: Orthomyxoviridae: He viruses and their replication. in: D.M. Knipe, P.M. Howley, (Eds.), Fields Virology, Lippincott Williams & Wilkins, Philadelphia, 2001, pp. 1487–1531.

    Google Scholar 

  21. 21.

    Vlasak, R., Krystal, M., Nacht, M., Palese, P.: The influenza C virus glycoprotein (HE) exhibits receptor-binding (hemagglutinin) and receptor-destroying (esterase) activities. Virology 160, 419–25 (1987)

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Muchmore, E.A., Varki, A.: Selective inactivation of influenza C esterase: A probe for detecting 9-O-acetylated sialic acids. Science 236, 1293–5 (1987)

    CAS  PubMed  Google Scholar 

  23. 23.

    Herrler, G., Dürkop, I., Becht, H., Klenk, H.D.: The glycoprotein of influenza C virus is the haemagglutinin, esterase and fusion factor. J. Gen. Virol. 69, 839–46 (1988)

    CAS  PubMed  Google Scholar 

  24. 24.

    Pekosz, A., Lamb, R.A.: Cell surface expression of biologically active influenza C virus HEF glycoprotein expressed from cDNA. J. Virol. 73, 8808–12 (1999)

    CAS  PubMed  Google Scholar 

  25. 25.

    Ohuchi, M., Ohuchi, R., Mifune, K.: Demonstration of hemolytic and fusion activities of influenza C virus. J. Virol. 42, 1076–9 (1982)

    CAS  PubMed  Google Scholar 

  26. 26.

    Kitame, F., Sugawara, K., Ohwada, K., Homma, M.: Proteolytic activation of hemolysis and fusion by influenza C virus. Arch. Virol. 73, 357–61 (1982)

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Formanowski, F., Meier-Ewert, H.: Isolation of the influenza C virus glycoprotein in a soluble form by bromelain digestion. Virus. Res. 10, 177–91 (1988)

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Nakada, S., Creager, R.S., Krystal, M., Aaronson, R.P., Palese, P.: Influenza C virus hemagglutinin: Comparison with influenza A and B virus hemagglutinins. J. Virol. 50, 118–24 (1984)

    CAS  PubMed  Google Scholar 

  29. 29.

    Pfeifer, J.B., Compans, R.W.: Structure of the influenza C glycoprotein gene as determined from cloned DNA. Virus. Res. 1, 281–96 (1984)

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Cornelissen, L.A., Wierda, C.M., van der Meer, F.J., Herrewegh, A.A., Horzinek, M.C., Egberink, H.F., de Groot, R.J.: Hemagglutinin-esterase, a novel structural protein of torovirus. J. Virol. 71, 5277–86 (1997)

    CAS  PubMed  Google Scholar 

  31. 31.

    Rosenthal, P.B., Zhang, X., Formanowski, F., Fitz, W., Wong, C.H., Meier-Ewert, H., Skehel, J.J., Wiley, D.C.: Structure of the haemagglutinin-esterase-fusion glycoprotein of influenza C virus. Nature 396, 92–6 (1998)

    CAS  PubMed  Google Scholar 

  32. 32.

    Compans, R.W., Bishop, D.H., Meier-Ewert, H.: Structural components of influenza C virions. J. Virol. 21, 658–65 (1977)

    CAS  PubMed  Google Scholar 

  33. 33.

    Herrler, G., Nagele, A., Meier-Ewert, H., Bhown, A.S., Compans, R.W.: Isolation and structural analysis of influenza C virion glycoproteins. Virology 113, 439–51 (1981)

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Hewat, E.A., Cusack, S., Ruigrok, R.W., Verwey, C.: Low resolution structure of the influenza C glycoprotein determined by electron microscopy. J. Mol. Biol. 175, 175–93 (1984)

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Herrler, G., Compans, R.W., Meier-Ewert, H.: A precursor glycoprotein in influenza C virus. Virology 99, 49–56 (1979)

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Vlasak, R., Muster, T., Lauro, A.M., Powers, J.C., Palese, P.: Influenza C virus esterase: Analysis of catalytic site, inhibition, and possible function. J. Virol. 63, 2056–62 (1989)

    CAS  PubMed  Google Scholar 

  37. 37.

    Zhang, X., Rosenthal, P.B., Formanowski, F., Fitz, W., Wong, C.H.: Meier-Ewert H, Skehel JJ, Wiley DC, X-ray crystallographic determination of the structure of the influenza C virus haemagglutinin-esterase-fusion glycoprotein. Acta. Crystallogr. D. Biol. Crystallogr. 55, 945–61 (1999)

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    Szepanski, S., Gross, H.J., Brossmer, R., Klenk, H.D., Herrler, G.: A single point mutation of the influenza C virus glycoprotein (HEF) changes the viral receptor-binding activity. Virology 188, 85–92 (1992)

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    Matsuzaki, M., Sugawara, K., Adachi, K., Hongo, S., Nishimura, H., Kitame, F., Nakamura, K.: Location of neutralizing epitopes on the hemagglutinin-esterase protein of influenza C virus. Virology 189, 79–87 (1992)

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Umetsu, Y., Sugawara, K., Nishimura, H., Hongo, S., Matsuzaki, M., Kitame, F., Nakamura, K.: Selection of antigenically distinct variants of influenza C viruses by the host cell. Virology 189, 740–4 (1992)

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Marschall, M., Herrler, G., Boswald, C., Foerst, G., Meier-Ewert, H.: Persistent influenza C virus possesses distinct functional properties due to a modified HEF glycoprotein. J. Gen. Virol. 75, 2189–96 (1994)

    CAS  PubMed  Google Scholar 

  42. 42.

    Pleschka, S., Klenk, H.D., Herrler, G.: The catalytic triad of the influenza C virus glycoprotein HEF esterase: Characterization by site-directed mutagenesis and functional analysis. J. Gen. Virol. 76, 2529–37 (1995)

    CAS  PubMed  Google Scholar 

  43. 43.

    Luytjes, W., Bredenbeek, P.J., Noten, A.F., Horzinek, M.C., Spaan, W.J.: Sequence of mouse hepatitis virus A59 mRNA 2: Indications for RNA recombination between coronaviruses and influenza C virus. Virology 166, 415–22 (1988)

    Article  CAS  PubMed  Google Scholar 

  44. 44.

    Snijder, E.J., den Boon, J.A., Horzinek, M.C., Spaan, W.J.: Comparison of the genome organization of toro- and coronaviruses: Evidence for two nonhomologous RNA recombination events during Berne virus evolution. Virology 180, 448–52 (1991)

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Snijder, E.J., den Boon, J.A., Bredenbeek, P.J., Horzinek, M.C., Rijnbrand, R., Spaan, W.J.: The carboxyl-terminal part of the putative Berne virus polymerase is expressed by ribosomal frameshifting and contains sequence motifs which indicate that toro- and coronaviruses are evolutionarily related. Nucleic Acids Res. 18, 4535–42 (1990)

    CAS  PubMed  Google Scholar 

  46. 46.

    Gonzalez, J.M., Gomez-Puertas, P., Cavanagh, D., Gorbalenya, A.E., Enjuanes, L.: A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae. Arch. Virol. 148, 2207–35 (2003)

    CAS  PubMed  Google Scholar 

  47. 47.

    Cavanagh, D.: Nidovirales: A new order comprising Coronaviridae and Arteriviridae. Arch. Virol. 142, 629–33 (1997)

    CAS  PubMed  Google Scholar 

  48. 48.

    Spaan, W.J.M., Brian, D.A., Cavanagh, D., de Groot, R.J., Enjuanes, L., Gorbalenya, A.E., Holmes, K.V., Masters, P., Rottier, P.J.M., Taguchi, F., Talbot, P.J.: Virus Taxonomy; Reports of the International Committee on Taxonomy of Viruses, 8th ed. C.M. Fauquet, M.A. Mayo, J. Maniloff, U. Desselberger, L.A. Ball, (Eds.), Academic Press, 2004, pp. 945–962.

  49. 49.

    Marra, M.A., Jones, S.J., Astell, C.R., Holt, R.A., Brooks-Wilson, A., Butterfield, Y.S., Khattra, J., Asano, J.K., Barber, S.A., Chan, S.Y., Cloutier, A., Coughlin, S.M., Freeman, D., Girn, N., Griffith, O.L., Leach, S.R., Mayo, M., McDonald, H., Montgomery, S.B., Pandoh, P.K., Petrescu, A.S., Robertson, A.G., Schein, J.E., Siddiqui, A., Smailus, D.E., Stott, J.M., Yang, G.S., Plummer, F., Andonov, A., Artsob, H., Bastien, N., Bernard, K., Booth, T.F., Bowness, D., Czub, M., Drebot, M., Fernando, L., Flick, R., Garbutt, M., Gray, M., Grolla, A., Jones, S., Feldmann, H., Meyers, A., Kabani, A., Li, Y., Normand, S., Stroher, U., Tipples, G.A., Tyler, S., Vogrig, R., Ward, D., Watson, B., Brunham, R.C., Krajden, M., Petric, M., Skowronski, D.M., Upton, C., Roper, R.L.: The Genome sequence of the SARS-associated coronavirus. Science 300, 1399–404 (2003)

    Article  CAS  PubMed  Google Scholar 

  50. 50.

    Rota, P.A., Oberste, M.S., Monroe, S.S., Nix, W.A., Campagnoli, R., Icenogle, J.P., Penaranda, S., Bankamp, B., Maher, K., Chen, M.H., Tong, S., Tamin, A., Lowe, L., Frace, M., DeRisi, J.L., Chen, Q., Wang, D., Erdman, D.D., Peret, T.C., Burns, C., Ksiazek, T.G., Rollin, P.E., Sanchez, A., Liffick, S., Holloway, B., Limor, J., McCaustland, K., Olsen-Rasmussen, M., Fouchier, R., Gunther, S., Osterhaus, A.D., Drosten, C., Pallansch, M.A., Anderson, L.J., Bellini, W.J.: Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300, 1394–9 (2003)

    Article  CAS  PubMed  Google Scholar 

  51. 51.

    van der Hoek, L., Pyrc, K., Jebbink, M.F.: Vermeulen-Oost W, Berkhout RJM, Wolthers KC, Wertheim-van Dillen PME, Kaandorp J, Spaargaren J, Berkhout B, Identification of a new human coronavirus. Nature Med. 10, 368–373 (2004)

    CAS  PubMed  Google Scholar 

  52. 52.

    Woo, P.C., Lau, S.K., Chu, C.M., Chan, K.H., Tsoi, H.W., Huang, Y., Wong, B.H., Poon, R.W., Cai, J.J., Luk, W.K., Poon, L.L., Wong, S.S., Guan, Y., Peiris, J.S., Yuen, K.Y.: Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J. Virol. 79, 884–95 (2005)

    Article  CAS  PubMed  Google Scholar 

  53. 53.

    de Vries, A.A.F., Horzinek, M.C., Rottier, P.J.M., de Groot, R.J.: The genome organization of the Nidovirales: Similarities and differences between Arteri-, Toro-, and Coronaviruses. Sem. Virol. 8, 33–47 (1997)

    CAS  Google Scholar 

  54. 54.

    Den Boon, J.A., Snijder, E.J., Locker, J.K., Horzinek, M.C., Rottier, P.J.: Another triple-spanning envelope protein among intracellularly budding RNA viruses: The torovirus E protein. Virology 182, 655–63 (1991)

    Article  CAS  PubMed  Google Scholar 

  55. 55.

    de Groot, R.J., Luytjes, W., Horzinek, M.C., van der Zeijst, B.A., Spaan, W.J., Lenstra, J.A.: Evidence for a coiled-coil structure in the spike proteins of coronaviruses. J. Mol. Biol. 196, 963–6 (1987)

    CAS  PubMed  Google Scholar 

  56. 56.

    Bosch, B.J., van der Zee, R., de Haan, C.A., Rottier, P.J.: The coronavirus spike protein is a class I virus fusion protein: Structural and functional characterization of the fusion core complex. J. Virol. 77, 8801–11 (2003)

    Article  CAS  PubMed  Google Scholar 

  57. 57.

    Bosch, B.J., Martina, B.E., Van Der Zee, R., Lepault, J., Haijema, B.J., Versluis, C., Heck, A.J.: De Groot R, Osterhaus AD, Rottier PJ, Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides. Proc. Natl. Acad. Sci. USA 101, 8455–60 (2004)

    Article  CAS  PubMed  Google Scholar 

  58. 58.

    Snijder, E.J., Den Boon, J.A., Spaan, W.J., Weiss, M., Horzinek, M.C.: Primary structure and post-translational processing of the Berne virus peplomer protein. Virology 178, 355–63 (1990)

    Article  CAS  PubMed  Google Scholar 

  59. 59.

    Cavanagh, D.: The coronavirus surface glycoprotein. in: S.G. Siddell, (Eds.), The Coronaviridae,, (Plenum Press, New York, 1995), pp. 73–113.

    Google Scholar 

  60. 60.

    Gallagher, T.M., Buchmeier, M.J.: Coronavirus spike proteins in viral entry and pathogenesis. Virology 279, 371–374 (2001)

    Article  CAS  PubMed  Google Scholar 

  61. 61.

    Yokomori, K., La Monica, N., Makino, S., Shieh, C.K., Lai, M.M.: Biosynthesis, structure, and biological activities of envelope protein gp65 of murine coronavirus. Virology 173, 683–91 (1989)

    Article  CAS  PubMed  Google Scholar 

  62. 62.

    Hogue, B.G., Kienzle, T.E., Brian, D.A.: Synthesis and processing of the bovine enteric coronavirus haemagglutinin protein. J. Gen. Virol. 70, 345–52 (1989)

    CAS  PubMed  Google Scholar 

  63. 63.

    Kienzle, T.E., Abraham, S., Hogue, B.G., Brian, D.A.: Structure and orientation of expressed bovine coronavirus hemagglutinin-esterase protein. J. Virol. 64, 1834–8 (1990)

    CAS  PubMed  Google Scholar 

  64. 64.

    Bridger, J.C., Caul, E.O., Egglestone, S.I.: Replication of an enteric bovine coronavirus in intestinal organ cultures. Arch. Virol. 57, 43–51 (1978)

    Article  CAS  PubMed  Google Scholar 

  65. 65.

    Sugiyama, K., Amano, Y.: Morphological and biological properties of a new coronavirus associated with diarrhea in infant mice. Arch. Virol. 67, 241–51 (1981)

    Article  CAS  PubMed  Google Scholar 

  66. 66.

    Shieh, C.K., Lee, H.J., Yokomori, K., La Monica, N., Makino, S., Lai, M.M.: Identification of a new transcriptional initiation site and the corresponding functional gene 2b in the murine coronavirus RNA genome. J. Virol. 63, 3729–36 (1989)

    CAS  PubMed  Google Scholar 

  67. 67.

    Deregt, D., Sabara, M., Babiuk, L.A.: Structural proteins of bovine coronavirus and their intracellular processing. J. Gen. Virol. 68, 2863–77 (1987)

    CAS  PubMed  Google Scholar 

  68. 68.

    King, B., Brian, D.A.: Bovine coronavirus structural proteins. J. Virol. 42, 700–7 (1982)

    CAS  PubMed  Google Scholar 

  69. 69.

    King, B., Potts, B.J., Brian, D.A.: Bovine coronavirus hemagglutinin protein. Virus. Res. 2, 53–9 (1985)

    Article  CAS  PubMed  Google Scholar 

  70. 70.

    Hogue, B.G., Brian, D.A.: Structural proteins of human respiratory coronavirus OC43. Virus Res. 5, 131–44 (1986)

    Article  CAS  PubMed  Google Scholar 

  71. 71.

    Vlasak, R., Luytjes, W., Spaan, W., Palese, P.: Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses. Proc. Natl. Acad. Sci. USA 85, 4526–9 (1988)

    CAS  PubMed  Google Scholar 

  72. 72.

    Vlasak, R., Luytjes, W., Leider, J., Spaan, W., Palese, P.: The E3 protein of bovine coronavirus is a receptor-destroying enzyme with acetylesterase activity. J. Virol. 62, 4686–90 (1988)

    CAS  PubMed  Google Scholar 

  73. 73.

    Schultze, B., Herrler, G.: Bovine coronavirus uses N-acetyl-9-O-acetylneuraminic acid as a receptor determinant to initiate the infection of cultured cells. J. Gen. Virol. 73, 901–6 (1992)

    CAS  PubMed  Google Scholar 

  74. 74.

    Pfleiderer, M., Routledge, E., Herrler, G., Siddell, S.G.: High level transient expression of the murine coronavirus haemagglutinin-esterase. J. Gen. Virol. 72, 1309–15 (1991)

    CAS  PubMed  Google Scholar 

  75. 75.

    Parker, M.D., Yoo, D., Babiuk, L.A.: Expression and secretion of the bovine coronavirus hemagglutinin-esterase glycoprotein by insect cells infected with recombinant baculoviruses. J. Virol. 64, 1625–9 (1990)

    CAS  PubMed  Google Scholar 

  76. 76.

    Yoo, D., Graham, F.L., Prevec, L., Parker, M.D., Benko, M., Zamb, T., Babiuk, L.A.: Synthesis and processing of the haemagglutinin-esterase glycoprotein of bovine coronavirus encoded in the E3 region of adenovirus. J. Gen. Virol. 73, 2591–600 (1992)

    CAS  PubMed  Google Scholar 

  77. 77.

    Yokomori, K., Banner, L.R., Lai, M.M.: Heterogeneity of gene expression of the hemagglutinin-esterase (HE) protein of murine coronaviruses. Virology 183, 647–57 (1991)

    Article  CAS  PubMed  Google Scholar 

  78. 78.

    Siddell, S., Wege, H., Barthel, A., ter Meulen, V.: Coronavirus JHM: Intracellular protein synthesis. J. Gen. Virol. 53, 145–55 (1981)

    CAS  PubMed  Google Scholar 

  79. 79.

    Siddell, S.G.: Coronavirus JHM: Tryptic peptide fingerprinting of virion proteins and intracellular polypeptides. J. Gen. Virol. 62, 259–69 (1982)

    CAS  PubMed  Google Scholar 

  80. 80.

    Sugiyama, K., Amano, Y.: Hemagglutination and structural polypeptides of a new coronavirus associated with diarrhea in infant mice. Arch. Virol. 66, 95–105 (1980)

    Article  CAS  PubMed  Google Scholar 

  81. 81.

    Sugiyama, K., Ishikawa, R., Fukuhara, N.: Structural polypeptides of the murine coronavirus DVIM, Arch. Virol. 89, 245–54 (1986)

    CAS  Google Scholar 

  82. 82.

    Duckmanton, L.M., Tellier, R., Liu, P., Petric, M.: Bovine torovirus: Sequencing of the structural genes and expression of the nucleocapsid protein of Breda virus. Virus Res 58, 83–96 (1998)

    Article  CAS  PubMed  Google Scholar 

  83. 83.

    Smits, S.L., Lavazza, A., Matiz, K., Horzinek, M.C., Koopmans, M.P., de Groot, R.J.: Phylogenetic and evolutionary relationships among torovirus field variants: Evidence for multiple intertypic recombination events. J. Virol. 77, 9567–77 (2003)

    Article  CAS  PubMed  Google Scholar 

  84. 84.

    Kroneman, A., Cornelissen, L.A., Horzinek, M.C., de Groot, R.J., Egberink, H.F.: Identification and characterization of a porcine torovirus. J. Virol. 72, 3507–3511 (1998)

    CAS  PubMed  Google Scholar 

  85. 85.

    Wagaman, P.C., Spence, H.A., O'Callaghan, R.J.: Detection of influenza C virus by using an in situ esterase assay. J. Clin. Microbiol. 27, 832–836 (1989)

    CAS  PubMed  Google Scholar 

  86. 86.

    Smits, S.L., Gerwig, G.J., van Vliet, A.L., Lissenberg, A., Briza, P., Kamerling, J.P., Vlasak, R., de Groot, R.J.: Nidovirus sialate-O-acetylesterases: Evolution and substrate specificity of coronaviral and toroviral receptor-destroying enzymes. J. Biol. Chem. 280, 6933–41 (2005)

    Article  CAS  PubMed  Google Scholar 

  87. 87.

    Snijder, E.J., Bredenbeek, P.J., Dobbe, J.C., Thiel, V., Ziebuhr, J., Poon, L.L., Guan, Y., Rozanov, M., Spaan, W.J., Gorbalenya, A.E.: Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J. Mol. Biol. 331, 991–1004 (2003)

    Article  CAS  PubMed  Google Scholar 

  88. 88.

    Falk, K., Aspehaug, V., Vlasak, R., Endresen, C.: Identification and characterization of viral structural proteins of infectious salmon anemia virus. J. Virol. 78, 3063–71 (2004)

    Article  CAS  PubMed  Google Scholar 

  89. 89.

    Hellebø, A., Vilas, U., Falk, K., Vlasak, R.: Infectious salmon anemia virus specifically binds to and hydrolyzes 4-O-acetylated sialic acids. J. Virol. 78, 3055–62 (2004)

    PubMed  Google Scholar 

  90. 90.

    Duckmanton, L., Tellier, R., Richardson, C., Petric, M.: Notice of retraction to “The novel hemagglutinin-esterase genes of human torovirus and Breda virus”. [Virus Research 64 (1999) 137–149]. Virus Res. 81, 167 (2001)

    Google Scholar 

  91. 91.

    Duckmanton, L., Tellier, R., Richardson, C., Petric, M.: The novel hemagglutinin-esterase genes of human torovirus and Breda virus. Virus. Res. 64, 137–49 (1999)

    Article  CAS  PubMed  Google Scholar 

  92. 92.

    Callebaut, P.E., Pensaert, M.B.: Characterization and isolation of structural polypeptides in haemagglutinating encephalomyelitis virus. J. Gen. Virol. 48, 193–204 (1980)

    CAS  PubMed  Google Scholar 

  93. 93.

    Schultze, B., Wahn, K., Klenk, H.D., Herrler, G.: Isolated HE-protein from hemagglutinating encephalomyelitis virus and bovine coronavirus has receptor-destroying and receptor-binding activity. Virology 180, 221–8 (1991)

    Article  CAS  PubMed  Google Scholar 

  94. 94.

    Nuttall, P.A., Harrap, K.A.: Isolation of a coronavirus during studies on puffinosis, a disease of the Manx shearwater (Puffinus puffinus). Arch. Virol. 73, 1–13 (1982)

    Article  CAS  PubMed  Google Scholar 

  95. 95.

    Klausegger, A., Strobl, B., Regl, G., Kaser, A., Luytjes, W., Vlasak, R.: Identification of a coronavirus hemagglutinin-esterase with a substrate specificity different from those of influenza C virus and bovine coronavirus. J. Virol. 73, 3737–43 (1999)

    CAS  PubMed  Google Scholar 

  96. 96.

    Wurzer, W.J., Obojes, K., Vlasak, R.: The sialate-4-O-acetylesterases of coronaviruses related to mouse hepatitis virus: A proposal to reorganize group 2 Coronaviridae. J. Gen. Virol. 83, 395–402 (2002)

    CAS  PubMed  Google Scholar 

  97. 97.

    Regl, G., Kaser, A., Iwersen, M., Schmid, H., Kohla, G., Strobl, B., Vilas, U., Schauer, R., Vlasak, R.: The hemagglutinin-esterase of mouse hepatitis virus strain S is a sialate-4-O-acetylesterase. J. Virol. 73, 4721–7 (1999)

    CAS  PubMed  Google Scholar 

  98. 98.

    Strasser, P., Unger, U., Strobl, B., Vilas, U., Vlasak, R.: Recombinant viral sialate-O-acetylesterases. Glycoconjugate. J. 20, 551–61 (2004)

    CAS  Google Scholar 

  99. 99.

    Talbot, P.J.: Hemagglutination by murine hepatitis viruses. Absence of detectable activity in strains 3, A59, and S grown on DBT cells. Intervirology 30, 117–20 (1989)

    CAS  PubMed  Google Scholar 

  100. 100.

    Künkel, F., Herrler, G.: Structural and functional analysis of the surface protein of human coronavirus OC43, Virology 195, 195–202 (1993)

    Article  PubMed  Google Scholar 

  101. 101.

    Künkel, F., Herrler, G.: Structural and functional analysis of the S proteins of two human coronavirus OC43 strains adapted to growth in different cells, Arch. Virol. 141, 1123–31 (1996)

    Google Scholar 

  102. 102.

    Sugiyama, K., Kasai, M., Kato, S., Kasai, H., Hatakeyama, K.: Haemagglutinin-esterase protein (HE) of murine corona virus: DVIM (diarrhea virus of infant mice). Arch. Virol. 143, 1523–34 (1998)

    Article  CAS  PubMed  Google Scholar 

  103. 103.

    Schultze, B., Gross, H.J., Brossmer, R., Herrler, G.: The S protein of bovine coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant. J. Virol. 65, 6232–7 (1991)

    CAS  PubMed  Google Scholar 

  104. 104.

    Deregt, D., Babiuk, L.A.: Monoclonal antibodies to bovine coronavirus: Characteristics and topographical mapping of neutralizing epitopes on the E2 and E3 glycoproteins. Virology 161, 410–20 (1987)

    Google Scholar 

  105. 105.

    Deregt, D., Gifford, G.A., Ijaz, M.K., Watts, T.C., Gilchrist. J.E., Haines, D.M., Babiuk, L.A.: Monoclonal antibodies to bovine coronavirus glycoproteins E2 and E3: Demonstration of in vivo virus-neutralizing activity. J. Gen. Virol. 70, 993–8 (1989)

    CAS  PubMed  Google Scholar 

  106. 106.

    Kasai, H., Morita, E., Hatakeyama, K., Sugiyama, K.: Characterization of haemagglutinin-esterase protein (HE) of murine corona virus DVIM by monoclonal antibodies. Arch. Virol. 143, 1941–8 (1998)

    Article  CAS  PubMed  Google Scholar 

  107. 107.

    Williams, R.K., Jiang, G.S., Holmes, K.V.: Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. Proc Natl Acad Sci U S A 88, 5533–6 (1991)

    CAS  PubMed  Google Scholar 

  108. 108.

    Dveksler, G.S., Pensiero, M.N., Cardellichio, C.B., Williams, R.K., Jiang, G.S., Holmes, K.V.: Dieffenbach CW, Cloning of the mouse hepatitis virus (MHV) receptor: Expression in human and hamster cell lines confers susceptibility to MHV. J. Virol. 65, 6881–91 (1991)

    CAS  PubMed  Google Scholar 

  109. 109.

    Dveksler, G.S., Pensiero, M.N., Dieffenbach, C.W., Cardellichio, C.B., Basile, A.A., Elia, P.E., Holmes, K.V.: Mouse hepatitis virus strain A59 and blocking antireceptor monoclonal antibody bind to the N-terminal domain of cellular receptor. Proc Natl Acad Sci U S A 90, 1716–20 (1993)

    CAS  PubMed  Google Scholar 

  110. 110.

    Dveksler, G.S., Dieffenbach, C.W., Cardellichio, C.B., McCuaig, K., Pensiero, M.N., Jiang, G.S., Beauchemin, N., Holmes, K.V.: Several members of the mouse carcinoembryonic antigen-related glycoprotein family are functional receptors for the coronavirus mouse hepatitis virus-A59. J. Virol. 67, 1–8 (1993)

    CAS  PubMed  Google Scholar 

  111. 111.

    Yokomori, K., Lai, M.M.: Mouse hepatitis virus utilizes two carcinoembryonic antigens as alternative receptors. J. Virol. 66, 6194–9 (1992)

    CAS  PubMed  Google Scholar 

  112. 112.

    Gagneten, S., Gout, O., Dubois-Dalcq, M., Rottier, P., Rossen, J., Holmes, K.V.: Interaction of mouse hepatitis virus (MHV) spike glycoprotein with receptor glycoprotein MHVR is required for infection with an MHV strain that expresses the hemagglutinin-esterase glycoprotein. J. Virol. 69, 889–95 (1995)

    CAS  PubMed  Google Scholar 

  113. 113.

    Lavi, E., Gilden, D.H., Highkin, M.K., Weiss, S.R.: The organ tropism of mouse hepatitis virus A59 in mice is dependent on dose and route of inoculation. Lab. Anim. Sci. 36, 130–5 (1986)

    CAS  PubMed  Google Scholar 

  114. 114.

    Lissenberg, A., Vrolijk, M.M., van Vliet, A.L.W., Langereis, M.A., de Groot-Mijnes, J.D.F., Rottier, P.J.M., de Groot, R.J.: Luxury at a cost? Recombinant mouse hepatitis viruses expressing the accessory hemagglutinin esterase protein display reduced fitness in vitro. J. Virol. 79, 15054–63 (2005)

    Article  CAS  PubMed  Google Scholar 

  115. 115.

    Taguchi, F., Massa, P.T., ter Meulen, V.: Characterization of a variant virus isolated from neural cell culture after infection of mouse coronavirus JHMV. Virology 155, 267–70 (1986)

    Article  CAS  PubMed  Google Scholar 

  116. 116.

    Kazi, L., Lissenberg, A., Watson, R., de Groot, R.J., Weiss, S.R.: Expression of hemagglutinin esterase protein from recombinant mouse hepatitis virus enhances neurovirulence. J. Virol. 79, 15064–73 (2005)

    Article  CAS  PubMed  Google Scholar 

  117. 117.

    Schultze, B., Zimmer, G., Herrler, G.: Virus entry into a polarized epithelial cell line (MDCK): Similarities and dissimilarities between influenza C virus and bovine coronavirus. J. Gen. Virol. 77, 2507–14 (1996)

    CAS  PubMed  Google Scholar 

  118. 118.

    Popova, R., Zhang, X.: The spike but not the hemagglutinin/esterase protein of bovine coronavirus is necessary and sufficient for viral infection. Virology 294, 222–36 (2002)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Raoul J. de Groot.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de Groot, R.J. Structure, function and evolution of the hemagglutinin-esterase proteins of corona- and toroviruses. Glycoconj J 23, 59–72 (2006). https://doi.org/10.1007/s10719-006-5438-8

Download citation

Keywords

  • Influenza
  • Sialic Acid
  • Cell Surface Molecule
  • Terminal Residue
  • Infectious Salmon Anemia Virus