Skip to main content

Advertisement

Log in

Establishment of cells exhibiting mutated glycolipid synthesis from mouse thymus by immortalization with SV-40 virus

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Immortalization with simian virus-40 and cloning of immortalized cells from mouse thymus were performed to establish cell lines for characterization of the mode of glycolipid expression in the thymic cells. Among the 25 cell lines obtained, three lines with different morphologies were established, that is, epithelial (IMTH-E), fibroblastic (IMTH-F), and asterisk-like (IMTH-I) cells, and their glycolipids, together with those in the thymus, were determined systematically. The major glycolipids in mouse thymus were the globo- and ganglio-series, both of which, were co-expressed in the three cell lines established. However, the mode of modification of the globo- and ganglio-series was distinct for each cell line. As to the globo-series, the structures with the longest carbohydrate chain for IMTH-E, -F, and -I cells were Gb3Cer, Gb4Cer, and Forssman antigen, respectively, having stepwise shorter carbohydrates at the nonreducing termini. Although the acidic glycolipids in IMTH-E cells comprised GM3 and GM2, and their sulfated isomers, IMTH-F and -I cells expressed GMlb and GDlc for the α-pathway, and up to GDI a for the a-pathway of ganglio-series glycolipids. GMlb-GalNAc present in the thymus was not detected in IMTH-F and -I cells, probably due to the lower synthetic activity for the metabolic intermediate Gg4Cer. The results indicate that the immortalization technique is useful for obtaining individual cells having unique glycolipid profiles for analysis of the functional significance and metabolism of glycolipids in the thymus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Svennerholm L, Chromatographic separation of human brain gangliosides, J Neurochem 10, 613–23 (1963).

    PubMed  CAS  Google Scholar 

  2. Iwamori M, Nagai Y, A new chromatographic approach to the resolution of individual gangliosides. Ganglioside mapping, Biochim Biophys Acta 528, 257–67 (1978).

    PubMed  CAS  Google Scholar 

  3. Iwamori M, Nagai Y, Ganglioside composition of rabbit thymus, Biochim Biophys Acta 665, 205–13 (1981).

    PubMed  CAS  Google Scholar 

  4. Iwamori M, Nagai Y, Comparative study on ganglioside compositions of various rabbit tissues. Tissue-specificity in ganglioside molecular species of rabbit thymus, Biochim Biophys Acta 665, 214–20 (1981).

    PubMed  CAS  Google Scholar 

  5. Iwamori M, Kiguchi K, Kanno J, Kitagawa M, Nagai Y, Gangliosides as markers of cortisone-sensitive and cortisone-resistant rabbit thymocytes: characterization of thymus-specific gangliosides and preferential changes of particular gangliosides in the thymus of cortisone-treated rabbits, Biochemistry 25, 889–96 (1986).

    Article  PubMed  CAS  Google Scholar 

  6. Nagai Y, Iwamori M, Brain and thymus gangliosides: their molecular diversity and its biological implications and a dynamic annular model for their function in cell surface membranes, Mol Cell Biochem 29, 81–90 (1980).

    Article  PubMed  CAS  Google Scholar 

  7. Iwamori M, Iwamori Y, Changes in the glycolipid composition and characteristic activation of GM3 synthase in the thymus after administration of dexamethasone, Glycoconjugate J 22, 117–24 (2005).

    Google Scholar 

  8. Iwamori M, Domino SE, Tissue-specific loss of fucosylated glycolipids in mice with targeted deletion of α(1,2)fucosyltransferase genes, Biochem J 380, 75–81 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. Horikawa K, Yamasaki M, Iwamori M, Nakakuma H, Takatsuki K, Nagai Y, Concanavalin A-stimulated expression of gangliosides with GalNAcβl-4(NeuAcα2–3)Galβ structure in murine thymocytes, Glycoconjugate J 8, 354–60 (1991).

    Article  CAS  Google Scholar 

  10. Nakamura K, Suzuki M, Taya C, Inagaki F, Yamakawa T, Suzuki A, A sialidase-susceptible ganglioside, IV3 α(NeuGcα2–8NeuGc)-Gg4Cer, is a major disialoganglioside in WHT/Ht mouse thymoma and thymocytes, J Biochem (Tokyo), 110, 832–41 (1991).

    Google Scholar 

  11. Muthing J, Egge H, Kniep B, Muhlradt PF, Structural characterization of gangliosides from murine T lymphocytes, Eur J Biochem 163, 407–16 (1987).

    Article  PubMed  CAS  Google Scholar 

  12. Bartoszewicz Z, Koscielak J, Pacuszka T, Structure of a new disialoganglioside GDlc from spontaneous murine thymoma, Carbohydr Res 151, 77–88 (1986).

    Article  PubMed  CAS  Google Scholar 

  13. Yohe HC, Macala LJ, Giordano G, McMurray WJ, GMlb and GMlb-GalNAc: major gangliosides of murine-derived macrophage-like WEHI-3 cells, Biochim Biophys Acta 1109, 210–7 (1992).

    PubMed  CAS  Google Scholar 

  14. Dittrich F, Hayakawa K, Nimtz M, Ebel F, Muhlradt PF, Identification of the mouse helper T lymphocyte differentiation antigen 3G11 as the ganglioside-IV3(NeuAc)2-GgOse4Cer, Biochem Biophys Res Commun 200, 1557–63 (1994).

    Article  PubMed  CAS  Google Scholar 

  15. Baum LG, Pang M, Perillo NL, Wu T, Delegeane A, Uittenbogaart CH, Fukuda M, Seilhamer JJ, Human thymic epithelial cells express an endogenous lectin, galectin-1, which binds to core 2 O-glycans on thymocytes and T lymphoblastoid cells, J Exp Med 181, 877–87 (1995).

    Article  PubMed  CAS  Google Scholar 

  16. Nakamura K, Suzuki H, Hirabayashi Y, Suzuki A, IV3 α(NeuGcα2–8NeuGc)-Gg4Cer is restricted to CD4+ T cells producing interleukin-2 and a small population of mature thymocytes in mice, J Biol Chem 270, 3876–81 (1995).

    Article  PubMed  CAS  Google Scholar 

  17. Noguchi M, Suping Z, Taguchi J, Hirano T, Hashimoto H, Hirose S, Iwamori M, Okumura K, Unique T cell differentiation markers: gangliosides with cholera toxin receptor activity on murine fetal thymocytes, Cell Immunol 156, 402–13 (1994).

    Article  PubMed  CAS  Google Scholar 

  18. Muthing J, Schwinzer B, Peter-Katalinic J, Egge H, Muhlradt PF, Gangliosides of murine T lymphocyte subpopulations, Biochemistry 28, 2923–9 (1989).

    PubMed  CAS  Google Scholar 

  19. Kasai M, Iwamori M, Nagai Y, Okumura K, Tada T, A glycolipid on the surface of mouse natural killer cells, Eur J Immunol 10, 175–80 (1980).

    PubMed  CAS  Google Scholar 

  20. Habu S, Kasai M, Nagai Y, Tamaoki N, Tada T, Herzenberg LA, Okumura K, The glycolipid asialo GM1 as a new differentiation antigen of fetal thymocytes, J Immunol 125, 2284–8 (1980).

    PubMed  CAS  Google Scholar 

  21. Muhlradt PF, Bethke U, Monner DA, Petzoldt K, The glycosphingolipid globoside as a serological marker on cytolytic T lymphocyte precursors and alloantigen-responsive proliferating T lymphocytes in murine spleen, Eur J Immunol 14, 852–8 (1984).

    PubMed  CAS  Google Scholar 

  22. Iwamori M, Ohta Y, Uchida Y, Tsukada Y, Arthrobacter ureafaciens sialidase isoenzymes, L, M1 and M2, cleave fucosyl GM1, Glycoconj J 14, 67–73 (1997).

    Article  PubMed  CAS  Google Scholar 

  23. Iwamori M, Shimomura J, Tsuyuhara S, Mogi M, Ishizaki S, Nagai Y, Differential reactivities of fucosyl GM1 and GM1 gangliosides on rat erythrocyte membrane revealed by analysis with anti-fucosyl GM1 and GM1 antisera, J Biochem 94, 1–10 (1983).

    PubMed  CAS  Google Scholar 

  24. Lee U, Santa K, Habu S, Nishimura T, Murine asialo GM1+CD8+ T cells as novel interleukin-12-responsive killer T cell precursors, Jpn J Cancer Res 87, 429–32 (1996).

    PubMed  CAS  Google Scholar 

  25. Stoffel W, Hanfland P, Analysis of amino sugar-containing glycosphingolipids by combined gas-liquid chromatography and mass spectrometry, Hoppe Seylers Z Physiol Chem 354, 21–31 (1973).

    PubMed  CAS  Google Scholar 

  26. Kubushiro K, Tsukazaki K, Tanaka J, Takamatsu K, Kiguchi K, Mikami M, Nozawa S, Nagai Y, Iwamori M, Human uterine endometrial adenocarcinoma: characteristic acquirement of synthetic potentials for II3SO3-LacCer and ganglio series sulfoglycosphingolipids after transfer of the cancer cells to culture, Cancer Res. 52, 803–9 (1992).

    Google Scholar 

  27. Ishiwata I, Nozawa S, Inoue T, Okumura H, Development and characterization of established cell lines from primary and metastatic regions of human endometrial adenocarcinoma, Cancer Res. 37, 1777–85 (1977).

    PubMed  CAS  Google Scholar 

  28. Nozawa S, Sakayori M, Ohta K, lizuka R, Mochizuki H, Soma M, Fujimoto J, Hata J, Iwamori M, Nagai Y, A monoclonal antibody (MSN-1) against a newly established uterine endometrial cancer cell line (SNG-II) and its application to immunohistochemistry and flow cytometry, Am J Obstet Cynecol 161, 1079–86 (1989).

    CAS  Google Scholar 

  29. Ishiwata I, Ishiwata C, Soma M, Arai J, Ishikawa H, Establishment of human endometrial adenocarcinoma cell line containing estradiol-17 β and progesterone receptors, Gynecol Oncol 17, 281–90 (1984).

    Article  PubMed  CAS  Google Scholar 

  30. Iwamori M, Domino SE, Tissue-specific loss of fucosylated glycolipids in mice with targeted deletion of α(1,2)fucosyltransferase genes, Biochem J 380, 75–81 (2004).

    Article  PubMed  CAS  Google Scholar 

  31. Iwamori M, Tanaka K, Kubushiro K, Lin B, Kiguchi K, Ishiwata I, Tsukazaki K, Nozawa S, Alterations in the glycolipid composition and cellular properties of ovarian carcinoma-derived RMG-1 cells on transfection of the α1,2-fucosyltransferase gene, Cancer Sci 96, 26–30. 28 (2005).

    Google Scholar 

  32. Nagata Y, Yamashiro S, Yodoi J, Lloyd KO, Shiku H, Furukawa K, Expression cloning of beta 1,4 N-acetylgalactosaminy ltransferase cDNAs that determine the expression of GM2 and GD2 gangliosides, J Biol Chem 267, 12082–9 (1992).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masao Iwamori.

Additional information

Abbreviations: Glycolipids are abbreviated according to the recommendations of the IUPAC-IUBMB Commission on Biochemical Nomenclature. Eur J Biochem 79, 11-21 (1977). The ganglioside nomenclature of Svennerholm [1] is employed throughout, except that GMlb, GMlb-GalNAc, GMlb-GaINAc-Gal, GDlc, and GDI α denote IV3 NeuAcα-Gg4Cer, IV4GalNAcβ, IV3NeuAcα-Gg4Cer, IV4(Galβ-3GalNAcβ),IV3NeuAcα-Gg4Cer, IV3NeuAcα2-Gg4Cer, and III6 NeuAcα, IV3NeuAcα-Gg4Cer, respectively. BSA, bovine serum albumin; PBS, phosphate-buffered saline; FCS, fetal calf serum; SV, simian virus; FABMS, fast atom bombardment mass spectrometry; NeuAc, N-acetylneuraminic acid; NeuGc, N-glycolylneuraminic acid; Hex, hexose: HexNAc, N-acetylhexosamine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwamori, M., Iwamori, Y. Establishment of cells exhibiting mutated glycolipid synthesis from mouse thymus by immortalization with SV-40 virus. Glycoconj J 22, 417–425 (2005). https://doi.org/10.1007/s10719-005-4086-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-005-4086-8

Keywords

Navigation