Skip to main content
Log in

YAG-Ceramic Powders — Size-Reduction Influence on Optical Ceramic Properties

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

The morphology and degree of agglomeration of the precursor and YAG-ceramic powders were investigated as functions of the grinding conditions, followed by an assessment of the influence of these parameters on the optical properties and structure of the ceramic. YAG-precursor powders were obtained by chemical coprecipitation. The morphology and size of the agglomerates and crystallites were assessed by means of scanning electron microscopy, laser diffraction analysis, x-ray diffraction analysis, and Brunauer–Emmett–Teller gas adsorption. It was discovered that grinding of the YAG precursor powders can decrease the degree of agglomeration of the ceramic powder. It was found that with a mass ratio of grinding balls to precursor powder of 6.75/1 and a mass ratio of the grinding medium to the mass of the precursor powder of 4.5/1, optimal conditions obtain for providing the necessary granulometric characteristics and the highest mono-dispersity. In summary, by such means the properties of YAG optical ceramic can be improved by using of an additional grinding stage for the powders synthesized by chemical deposition and by selecting suitable grinding modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. R. Lach, K. Wojciechowski, £. £añcucki, et al., “Transparent YAG material prepared from nano-powder with core-shell morphology,” Ceram. Int., 45(15), 19141 – 19147 (2019).

  2. T. A. Parthasarathy, T. Mah, and L. E. Matson, “Deformation behavior of an Al2O3Y3Al5O12 eutectic composite in comparison with sapphire and YAG,” J. Am. Ceram. Soc., 76(1), 29 – 32 (1993).

    Article  CAS  Google Scholar 

  3. T. Feng, J. Shi, and D. Jiang, “Preparation of transparent Ce:YSAG ceramic and its optical properties,” J. Eur. Ceram. Soc., 28(13), 2539 – 2543 (2008).

    Article  CAS  Google Scholar 

  4. E. S. Lukin, N. A. Makarov, A. I. Kozlov, et al. “Oxide ceramics of the new generation and areas of application,” Glass Ceram., 65(9 – 10), 348 – 352 (2008).

    Article  CAS  Google Scholar 

  5. C. Li, H. Zuo, M. Zhang, et al., “Fabrication of transparent YAG ceramics by solid-state method,” J. Chinese Ceram. Soc., 34(8), 979 – 984 (2006).

    CAS  Google Scholar 

  6. D. Michalik, M. Sopicka-Lizer, J. Plewa, and T. Pawlik, “Application of mechanochemical processing to synthesis of YAG:Ce garnet powder,” Arch. Metall. Mater., 56(4), 1257 – 1264 (2011).

    Article  CAS  Google Scholar 

  7. S.-H. Lee, S. Kochawattana, G. L. Messing, et al. “Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramics,” J. Am. Ceram. Soc., 89(6), 1945 – 1950 (2006).

    Article  CAS  Google Scholar 

  8. J. Wang, S. Zheng, R. Zeng, et al., “Microwave synthesis of homogeneous YAG nanopowder leading to a transparent ceramic,” J. Am. Ceram. Soc., 92(6), 1217 – 1223 (2009).

    Article  CAS  Google Scholar 

  9. Y. Zhang and H. Yu, “Synthesis of YAG powders by the co-precipitation method,” Ceram. Int. Elsevier, 35(5), 2077 – 2081 (2009).

    Article  CAS  Google Scholar 

  10. X. Han, Z. Liang, L. Feng, et al., “Co-precipitated synthesis of Al2O3–ZrO2 composite ceramic nanopowders by precipitant and drying method regulation: a systematic study,” Ceram. Int., 41(1), 505 – 513 (2015).

    Article  CAS  Google Scholar 

  11. B. Huang, R. Ren, Z. Zhang, and S. Zheng, ”The improvement of dispersibility of YIG precursor prepared via chemical coprecipitation,” J. Alloys Compd., 558, 56 – 61 (2013).

    Article  CAS  Google Scholar 

  12. L. Esposito, A. Piancastelli, A. L. Costa, et al., “Experimental features affecting the transparency of YAG ceramics,” Opt. Mater. (Amst.), 33(5), 713 – 721 (2011).

    Article  CAS  Google Scholar 

  13. A. L. Costa, L. Esposito, V. Medri, and A. Bellosi, “Synthesis of Nd-YAG material by citrate-nitrate sol-gel combustion route,” Adv. Eng. Mater., 9(4), 307 – 312 (2007).

    Article  CAS  Google Scholar 

  14. S. Lina, Z. Musen, T. Jun, et al. “Preparation of co-doped Ce, Pr:GAGG powder by chemical co-precipitation method and luminescence properties,” Chinese J. Lumin., 40(2), 137 – 142 (2019).

    Article  Google Scholar 

  15. W. E. Rhine and H. K. Bowen, “An overview of chemical and physical routes to advanced ceramic powders,” Ceram. Int. Elsevier, 17(3), 143 – 152 (1991).

    Article  CAS  Google Scholar 

  16. A. V. Belyakov, “High-density micro- and nanogranular ceramics. Transition of open pores to closed ones. Part 3. Sintering of workpieces without external pressure,” Novye Ogneupory (New Refract.), No. 1, 39 – 50 (2020).

  17. T. Zhou, L. Zhang, J. Zhang, et al., “Improved conversion efficiency of Cr4+ ions in Cr:YAG transparent ceramics by optimizing the particle sizes of sintering aids,” Opt. Mater., 50, 11 – 14 (2015).

    Article  CAS  Google Scholar 

  18. A. Monshi, M. R. Foroughi, and M. R. Monshi, “Modified Scherrer equation to estimate more accurately nanocrystallite size using XRD,” World J. Nano Sci. Eng., 2(3), 154 – 160 (2012).

    Article  Google Scholar 

  19. J. Li, F. Chen,W. Liu, et al., “Co-precipitation synthesis route to yttrium aluminum garnet (YAG) transparent ceramics,” J. Eur. Ceram. Soc., 32(11), 2971 – 2979 (2012).

    Article  CAS  Google Scholar 

  20. Y. Liu, X. Qin, H. Xin, and C. Song, “Synthesis of nanostructured Nd:Y2O3 powders by carbonate precipitation process for Nd:YAG ceramics,” J. Eur. Ceram. Soc., 33(13 – 14), 2625 – 2631 (2013).

    Article  CAS  Google Scholar 

  21. G. A. Kozhina, V. B. Fetisov, and L. M. Veretennikov, “Effect of heat treatment on aggregation and disaggregation of LaMnO3 nanopowders,” Dokl. Phys. Chem., 435(1), 185 – 188 (2010).

    Article  CAS  Google Scholar 

  22. P. Balakrishna, B. Narasimha Murty, and M. Anuradha, “A new process based agglomeration parameter to characterize ceramic powders,” J. Nucl. Mater., 384(2), 190 – 193 (2009).

  23. M. Gizowska, K. Perkowski, M. Pi1tek, et al., “Investigation of YAP/YAG powder sintering behavior using advanced thermal techniques,” J. Therm. Anal. Calorim., 138(3), 1987 – 1995 (2019).

  24. K. W. Powers, M. Palazuelos, B. M. Moudgil, and S. M. Roberts, “Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies,” Nanotoxicology, 1(1), 42 – 51 (2007).

    Article  CAS  Google Scholar 

  25. H. Ferkel and R. J. Hellmig, “Effect of nanopowder deagglomeration on the densities of nanocrystalline ceramic green bodies and their sintering behavior,” NanoStructured Mater., 11(5), 617 – 622 (1999).

    Article  CAS  Google Scholar 

  26. X. Chen, T. Lu, N. Wei, et al., “Effect of ball-milling granulation with PVB adhesive on the sinterability of co-precipitated Yb:YAG nanopowders,” J. Alloys Compd., 589, 448 – 454 (2014).

    Article  CAS  Google Scholar 

  27. T.-S. Yeh and M. D. Sacks, “Effect of particle size distribution on the sintering of aluminum,” J. Am. Ceram. Soc., 71(12), 484 – 487 (1988).

    Article  Google Scholar 

  28. J. A. Varela, O. J. Whittemore, and E. Longo, “Pore size evolution during sintering of ceramic oxides,” Ceram. Int. Elsevier, 16(3), 177 – 189 (1990).

    Article  CAS  Google Scholar 

  29. V. S. Bakunov and E. S. Lukin, “Oxide ceramic sintering particulars,” Glas. Ceram., 68(7 – 8), 211 – 215 (2011).

    Article  CAS  Google Scholar 

  30. G. L. Messing and A. J. Stevenson, “Toward pore-free ceramics,” Science, 322(5900), 383 – 384 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. J. Liu, T. Wu, R. Li, et al., “A cost-effective way of sintering Ce3+:YAG based ceramic phosphors for high power/high brightness phosphor-converted solid state light sources,” Phys. B Condens. Matter, 643, 414124 (2022).

    Article  CAS  Google Scholar 

  32. M. J. Mayo, “Processing of nanocrystalline ceramics from ultrafine particles,” Int. Mater. Rev., 41(3), 85 – 115 (1996).

    Article  CAS  Google Scholar 

  33. A. V. Ragulya, “Consolidation of ceramic nanopowders,” Adv. Appl. Ceram., 107(3), 118 – 134 (2008).

    Article  CAS  Google Scholar 

  34. D. Casellas, J. Alcalá, L. Llanes, and M. Anglada, “Fracture variability and R-curve behavior in yttria-stabilized zirconia ceramics,” J. Mater. Sci., 36(12), 3011 – 3025 (2001).

    Article  CAS  Google Scholar 

  35. R.W. Rice and R. C. Pohanka, “Grain-size dependence of spontaneous cracking in ceramics,” J. Am. Ceram. Soc., 62(11 – 12), 559 – 563 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Suprunchuk.

Additional information

Translated from Steklo i Keramika, No. 11, pp. 35 – 46, November, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suprunchuk, V.E., Kravtsov, A.A., Lapin, V.A. et al. YAG-Ceramic Powders — Size-Reduction Influence on Optical Ceramic Properties. Glass Ceram (2024). https://doi.org/10.1007/s10717-024-00637-6

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10717-024-00637-6

Keywords

Navigation