Skip to main content

Advertisement

Log in

Characteristics of Glass in Products of Experimental Modeling of Impact Melts

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

Ultrahigh-pressure high-temperature glasses are characterized by unusual structural and phase aspects that require closer investigation in order to elucidate their physical properties and the possibility of using innovative materials as prototypes. Experimental modeling of an impact process in laboratory conditions makes it possible to shed light on the nature of phase transformations on impacto-genesis. Impact glasses were obtained experimentally by melting the aluminosilicate and quartz components of the rocks of the target of the Kara astro-problem at pressure about 90 GPa and temperature about 7000°C. Investigations have shown that as a result of extreme external conditions, glasses of a specific composition are formed containing a high proportion of Ca and carbon. Thus, the results obtained indicate the possibility of obtaining glass of wide compositions, including carbon-containing glass, which can be used for further research in order to develop new materials and technologies for their production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. T. G. Shumilova, S. I. Isaenko, B. A. Makeev, et al., “Ultrahigh-pressure segregation of an impact melt,” Dokl. Akad. Nauk, 480(1), 90 – 93 (2018).

    Google Scholar 

  2. T. G. Shumilova, V. P. Lutoev, S. I. Isaenko, et al. “Spectroscopic features of ultrahigh-pressure impact glasses of the Kara astrobleme,” Sci. Rep., 8(1), 6923 (2018).

    Article  CAS  Google Scholar 

  3. T. G. Shumilova, A. A. Zubov, S. I. Isaenko, and S. N. Shanina, “Mineralogical features of ultrahigh pressure impact glasses of the Kara astrobleme (Pay-Khoy, Russia),” IOP Publishing IOP Conf. Series: Earth and Environmental Sci., 362, 012041 (2019).

  4. D. Bolmatov, V. V. Brazhkin, and K. Trachenko, “Thermodynamic behavior of supercritical matter,” Nature Comm., 4, 2331 (2013).

    Article  Google Scholar 

  5. V. L. Masaitis, M. A. Gnevushev, and G. I. Shafranovskii, “Mineral associations, mineralogical criteria for the genesis of astroblemes,” Zapiski Vsesoyuz. Mineral. Obshch-va, No. 3, 257 – 273 (1979).

  6. H. J. Melosh, Impact Cratering, a Geological Process, New York: Oxford University Press (1989).

    Google Scholar 

  7. V. L. Masaitis, M. S. Mashchak, A. I. Raikhlin, et al., Diamond-Bearing Impactites of the Popigai Astrobleme [in Russian], St. Petersburg: Izd. VSEGEI (1998).

  8. G. R. Osinski and E. Pierazzo, Impact Cratering: Processes and Products. John Wiley & Sons (2012).

  9. S. A. Vishnevskii, Astroblemes [in Russian], Nonparallel, Novosibirsk (2007).

  10. A. V. Korochantsev, Impact Transformation of Bitumen: Application to the Organic Matter of Meteorites and Impactites, Author’s Abstract of Candidate’s Thesis [in Russian], Institut Geokhim. Analitich. Khimii im. V. I. Vernadskogo, Moscow (2004).

  11. D. Stoffler and F. Langenhorst, “Shock metamorphism in nature and experiment: basic observations and theory,” Meteoritics, 29, 155 – 181 (1994).

    Article  Google Scholar 

  12. M. Poelchau, T. Kenkmann, K. Thoma, et al., “The MEMIN research unit: scaling impact cratering experiments in porous sandstones,” Meteoritics & Planetary Sci., 48(1), 8 – 22 (2013).

    Article  CAS  Google Scholar 

  13. F. Langenhorst and D. Stoffler, “Shock metamorphism of quartz in nature and experiment: I. Basic observations and theory,” Meteoritics, 29, 155 – 181 (1994).

    Article  Google Scholar 

  14. F. Langenhorst, “Shock metamorphism of some minerals: Basic introduction and microstructural observations,” Bull. Czech Geol. Survey, 77(4), 265 – 282 (2002).

    CAS  Google Scholar 

  15. F. Langenhorst and A. Deutsch, “Shock metamorphism of minerals,” Elements, 8, 31 – 36 (2012).

    Article  CAS  Google Scholar 

  16. I. N. Burdonskii, A. Yu. Gol’tsov, A. G. Leonov, et al. “Generation of shock waves in the interaction of powerful laser radiation with polycrystalline targets,” VANT, Ser. Termodynam. Sintez, 36(2), 8 – 18 (2013).

  17. V. V. Ulyashev and S. I. Isaenko, “Modeling of phase transformations in argillaceous limestone under impact,” Vest. Inst. Geologii Komi NTs URO RAN, No. 4. 40 – 44 (2018).

  18. V. V. Ulyashev, T. G. Shumilova, B. A. Kulnitskii, et al. “Experimental modeling of phase transformations in a weakly ordered carbon substance under impact action,” Mineralogiya, 6(3), 89 – 103 (2020).

    Google Scholar 

  19. E. M. Sorokin, O. I. Yakovlev, E. N. Slyuta, et al., “Experimental modeling of a micrometeorite impact on the Moon,” Geochem., 65(2), 107 – 122 (2020).

    Google Scholar 

  20. A. G. Grigoryants and A. N. Safonov, Laser Engineering and Technology, Book 3. Methods of Surface Laser Processing: Textbook for Universities [in Russian], Vysshaya Shkola, Moscow (1987).

  21. M. V. Gerasimov, B. A. Ivanov, O. I. Yakovlev, and Yu. P. Dikov, “Physics and chemistry of impacts,” Laboratory Astrophys. Space Res., 236, 279 – 330 (1999).

    Article  CAS  Google Scholar 

  22. V. N. Sigaev, S. V. Lotarev, E. V. Orlova, et al., “Structure of lanthanum-borogermanate glass with stillwellite composition according to vibrational spectroscopy data,” Glass Ceram., 67(3 – 4), 105 – 108 (2010).

    Article  CAS  Google Scholar 

  23. A. Sadezky, H. Muckenhuber, H. Grothe, et al., “Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information,” Carbon, 43, 1731 – 1742 (2005).

    Article  CAS  Google Scholar 

  24. T. T. Van Tran, T. Si Bui, S. Turrell, et al., “Controlled SnO2 nanocrystal growth in SiO2–SnO2 glass-ceramic monoliths,” J. Raman Spectrosc., 43, 869 – 875 (2012).

  25. N. N. Anfilogov, N. N. Bykov, and V. N. Osipov, Silicate Melts [in Russian], Moscow: Nauka (2005).

  26. K. Jurkiewicz, M. Pawlyta, and D. Zygadło, et al., “Evolution of glassy carbon under heat treatment: correlation structure– mechanical properties,” J. Mater. Sci., 53(5), 3509 – 3523 (2018).

  27. M. S. Mashchak, “Geological setting of the formation time of impact craters on Pai-Khoi,” in: Impact Craters at the Turn of the Mesozoic and Cenozoic [in Russian], Nauka, Leningrad (1990), pp. 24 – 37.

  28. I. B. Bobylev, V. N. Bykov, and V. N. Anfilogov, “Distribution of cations between silicate poly-anions of different structure according to Raman spectroscopy data,” Geokhimiya, No. 5. 732 – 736 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Ulyashev.

Additional information

Translated from Steklo i Keramika, No. 5, pp. 14 – 22, May, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulyashev, V.V., Shumilova, T.G. & Isaenko, S.I. Characteristics of Glass in Products of Experimental Modeling of Impact Melts. Glass Ceram 80, 178–184 (2023). https://doi.org/10.1007/s10717-023-00580-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-023-00580-y

Keywords

Navigation