Skip to main content

Advertisement

Log in

High-Temperature, Lightweight, Alkali-Activated Materials with Multi-Walled Carbon Nanotubes as Additives

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

This article investigates how the concentration (from 18 to 6%) of an alkaline activator liquid (AL) affects the viscosity and physicomechanical properties of chamotte-based geopolymer composites with additives (foam-glass production waste, multi-wall carbon nanotubes (MCN), and an air-entrainer (AE)) as function of the heat-treatment temperature (three different temperatures). Heat-treatment at 1000°C decreases the density from 1600 to 1240 kg/m3 for samples with AE, strength from 20.0 to 2.6 MPa, and shrinkage from 5.9 to 1.5%. The combined use of AE and MCN makes it possible to increase the strength of the samples to 7.9 – 10.3% and decrease their shrinkage to 16.0 – 8.2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. S. A. Bernal, E. D. Rodríguez, A. P. Kirchheim, and J. L. Provis, “Management and valorisation of wastes through use in producing alkali-activated cement materials,” J. Chem. Technol. Biotechnol., 91(9), 2365 – 2388 (2016).

    Article  CAS  Google Scholar 

  2. M. Amran, S. Debbarma, and T. Ozbakkaloglu, “Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties,” Constr. Building Mater., 270, 121857 (2021).

    Article  CAS  Google Scholar 

  3. O. A. Abdulkareem, M. M. A. B. Abdullah, K. Hussin, et al., “Mechanical and microstructural evaluations of lightweight aggregate geopolymer concrete before and after exposed to elevated temperatures,” Materials, 6(10), 4450 – 4461 (2013).

    Article  Google Scholar 

  4. M. A. Villaquirán-Caicedo, R. Mejía De Gutiérrez, and N. C. Gallego, “A novel MK-based geopolymer composite activated with rice husk ash and KOH: Performance at high temperature,” Materiales de Construcción, 67(325), 117 (2017).

    Article  Google Scholar 

  5. C. Lu, Z. Zhang, C. Shi, et al., “Rheology of alkali activated materials: A review,” Cement and Concrete Composites, 121(1940), 104061 (2021).

    Article  CAS  Google Scholar 

  6. Z. Zhang, Y. Zhu, T. Yang, et al., “Conversion of local industrial wastes into greener cement through geopolymer technology: A case study of high-magnesium nickel slag,” J. Cleaner Production, 141, 463 – 471 (2017).

    Article  CAS  Google Scholar 

  7. J. L. Provis, A. Palomo, and C. Shi, “Advances in understanding alkali-activated materials,” Cement Concrete Res., 78, 110 – 125 (2015).

    Article  CAS  Google Scholar 

  8. J. Xiang, L. Liu, X. Cui, et al., “Effect of limestone on rheological, shrinkage and mechanical properties of alkali — Activated slag/fly ash grouting materials,” Constr. Building Mater., 191, 1285 – 1292 (2018).

    Article  CAS  Google Scholar 

  9. A. Kashani, J. L. Provis, G. G. Qiao, and J. S. J. Van Deventer, “The interrelationship between surface chemistry and rheology in alkali activated slag paste,” Constr. Building Mater., 65, 583 – 591 (2014).

    Article  Google Scholar 

  10. E. Nägele and U. Schneider, “The zeta-potential of blast furnace slag and fly ash,” Cement Concrete Res., 19. 811 – 820 (1989).

    Article  Google Scholar 

  11. P. L. Lopez Gonzalez, R. M. Novais, J. Labrincha, et al., “Modifications of basic-oxygen-furnace slag microstructure and their effect on the rheology and the strength of alkali-activated binders,” Cement Concrete Comp., 97, 143 – 153 (2019).

  12. T. Williamson and M. C. G. Juenger, “The role of activating solution concentration on alkali–silica reaction in alkali-activated fly ash concrete,” Cement Concrete Res., 83, 124 – 130 (2016).

    Article  CAS  Google Scholar 

  13. W. Rakngan, T. Williamson, R. D. Ferron, et al., “Controlling workability in alkali-activated Class C fly ash,” Constr. Building Mater., 183. 226 – 233 (2018).

    Article  CAS  Google Scholar 

  14. J. Xiang, L. Liu, X. Cui, et al., “Effect of Fuller-fine sand on rheological, drying shrinkage, and microstructural properties of metakaolin-based geopolymer grouting materials,” Cement Concrete Comp., 104, 103381 (2019).

    Article  CAS  Google Scholar 

  15. A. Aboulayt, R. Jaafri, H. Samouh, et al., “Stability of a new geopolymer grout: Rheological and mechanical performances of metakaolin-fly ash binary mixtures,” Constr. Building Mater., 181, 420 – 436 (2018).

    Article  CAS  Google Scholar 

  16. C. Kuenzel, L. Li, L. Vandeperre, et al., “Influence of sand on the mechanical properties of metakaolin geo-polymers,” Constr. Building Mater., 66, 442 – 446 (2014).

    Article  Google Scholar 

  17. A. Hasnaoui, E. Ghorbel, and G. Wardeh, “Optimization approach of granulated blast furnace slag and metakaolin based geopolymer mortars,” Constr. Building Mater., 198, 10 – 26 (2019).

    Article  CAS  Google Scholar 

  18. C. Shi, “Characteristics and cementitious properties of ladle slag fines from steel production,” Cement Concrete Res., 32, 459 – 462 (2002).

    Article  CAS  Google Scholar 

  19. D. M. Roy, W. Jiang, and M. R. Silsbee, “Chloride diffusion in ordinary, blended, and alkali-activated cement pastes and its relation to other properties,” Cement Concrete Res., 30, 1879 – 1884 (2000).

    Article  CAS  Google Scholar 

  20. E. Douglas, A. Bilodeau, and V. M. Malhotra, “Properties and durability of alkali-activated slag concrete,” Mater. J., 89, 509 – 516 (1992).

    CAS  Google Scholar 

  21. P. Duxson, J. L. Provis, G. C. Lukey, and J. S. J. van Deventer, “The role of inorganic polymer technology in the development of green concrete,” Cement Concrete Res., 37, 1590 – 1597 (2007).

    Article  CAS  Google Scholar 

  22. A. Abdel-Aziem, E. Ewais, S. El-Gamal, and A. Mea-wad, “Possibility of using material activated with alkali as a binder for refractory concretes,” Refr. Industr. Ceram., 62, 404 – 410 (2021).

    Article  CAS  Google Scholar 

  23. Y.Wu, B. Lu, T. Bai, et al., “Geopolymer, green alkali activated cementitious material: Synthesis, applications and challenges,” Constr. Building Mater., 224, 930 – 949 (2019).

    Article  CAS  Google Scholar 

  24. F. A. Selim, M. S. Amin, M. Ramadan, and M. M. Hazem, “Effect of elevated temperature and cooling regimes on the compressive strength, microstructure and radiation attenuation of fly ash-cement composites modified with miscellaneous nanoparticles,” Constr. Building Mater., 258, 119648 (2020).

    Article  CAS  Google Scholar 

  25. J. Yuan, P. He, D. Jia, et al. “In situ processing of MWCNTs/leucite composites through geopolymer precursor,” J. Eurp. Ceram. Soc., 37, 2219 – 2226 (2017).

    Article  CAS  Google Scholar 

  26. J. Davidovits “Geopolymers: Ceramic-like inorganic polymers,” Int. J. Appl. Ceram. Technol., 8(3), 335 – 350 (2017).

    Google Scholar 

  27. K. Goyal, H. Singh, and R. Bhatia, “Experimental investigations of carbon nanotubes reinforcement on properties of ceramic-based composite coating,” J. Australian Ceram. Soc., 55, 315 – 322 (2019).

    Article  CAS  Google Scholar 

  28. D. Bajare, L. Vitola, L. Dembovska, and G. Bumanis, “Waste stream porous alkali activated materials for high temperature application,” Frontiers in Materials, 6, 1 – 13 (2019.).

    Article  Google Scholar 

  29. V. Bocullo, L. Vitola, D. Vaiciukyniene, et al., “The influence of the SiO2/Na2O ratio on the low calcium alkali activated binder based on fly ash,” Mater. Chem. Phys., 258, 123846 (2021).

    Article  CAS  Google Scholar 

  30. L. Dembovska, G. Bumanis, L. Vitola, and D. Bajare, “Influence of fillers on the alkali activated chamotte,” IOP Conf. Ser.: Mater. Sci. Eng., 251(1), 12009 (2017).

  31. T. Bakharev, “Thermal behavior of geopolymers prepared using class F fly ash and elevated temperature curing,” Cement Concrete Res., 36, 1134 – 1147 (2006).

    Article  CAS  Google Scholar 

  32. R. E. Lyon, P. N. Balaguru, A. Foden, et al., “Fire-resistant aluminosilicate composites,” Fire and Materials, 21, 67 – 73 (1997).

    Article  CAS  Google Scholar 

  33. J. Šeputytė-Jucikė, M. Kligys, and M. Sinica, “The effects of modifying additives and chemical admixtures on the properties of porous fresh and hardened cement paste,” Constr. Building Mater., 127, 679 – 691 (2016).

    Article  Google Scholar 

  34. G. M. Tsaousi, I. Douni, M. Taxiarchou, et al., “Development of foamed inorganic polymeric materials based on perlite,” IOP Conf. Ser.: Mater. Sci. Eng., 123(1), 12062 (2016).

  35. L. Korat, V. Ducman, A. Legat, and B. Mirtič, “Characterization of the pore-forming process in lightweight aggregate based on silica sludge by means of x-ray micro-tomography (micro-CT) and mercury intrusion porosimetry (MIP),” Ceram. Int., 39(6), 6997 – 7005 (2013).

    Article  CAS  Google Scholar 

  36. J. Henon, A. Alzina, J. Absi, et al., “Porosity control of cold consolidated geomaterial foam: Temperature effect,” Ceram. Int., 38(1), 77 – 84 (2012).

    Article  CAS  Google Scholar 

  37. D. M. A. Huiskes, A. Keulen, Q. L. Yu, and H. J. H. Brouwers, “Design and performance evaluation of ultralightweight geopolymer concrete,” Mater. Design, 89, 516 – 526 (2016).

    Article  CAS  Google Scholar 

  38. K. Pimraksa, P. Chindaprasirt, A. Rungchet, et al., “Lightweight geopolymer made of highly porous siliceous materials with various Na2O/Al2O3 and SiO2/Al2O3 ratios,” Mater. Sci. Eng. A, 528, 6616 – 6623 (2011).

    Article  CAS  Google Scholar 

  39. P. Posi, C. Teerachanwit, C. Tanutong, et al., “Lightweight geopolymer concrete containing aggregate from recycle lightweight block,” Mater. Design, 52, 580 – 586 (2013).

    Article  CAS  Google Scholar 

  40. R. M. Novais, L. H. Buruberri, M. P. Seabra, et al., “Novel porous fly ash-containing geopolymers for pH buffering applications,” J. Cleaner Prod., 124, 395 – 404 (2016).

    Article  CAS  Google Scholar 

  41. S. A. Bernal, E. D. Rodríguez, R. Meija De Gutiérrez, et al., “Mechanical and thermal characterization of geopolymers based on silicate-activated metakaolin/slag blends,” J. Mater. Sci., 46(16), 5477 – 5486 (2011).

    Article  CAS  Google Scholar 

  42. T. S. Lin, D. C. Jia, P. G. He, and M. R. Wang, “Thermomechanical and microstructural characterization of geopolymers with α-Al2O3 particle filler,” Int. J. Thermophysics, 30, Article No. 1568, 1568 – 1577 (2009).

  43. J. L. Bell, P. E. Driemeyer, andW. M. Kriven, “Formation of ceramics from metakaolin-based geopolymers. Part II. K-based geopolymer,” J. Am. Ceram. Soc., 92(3), 607 – 615 (2009)

  44. J. Vásquez, M. González, P. Vergara, et al., “Influence of conventional and functionalized carbon nanotubes in hybrid alkaline pastes with fly ash that contain high amounts of SO4,” Constr. Building Mater., 286, 122950 (2021).

    Article  Google Scholar 

  45. K. M. Liew, M. F. Kai, and L. W. Zhang, “Carbon nanotube reinforced cementitious composites: An overview,” Composites, Part A. Appl. Sci. Manuf., 91, 301 – 323 (2016).

    Article  CAS  Google Scholar 

  46. T. Shi, Z. Li, J. Guo, et al., “Research progress on CNTs/CNFs-modified cement-based composites – A review,” Constr. Building Mater., 202, 290 – 307 (2019).

    Article  CAS  Google Scholar 

  47. Z. Su, W. Hou, and Z. Sun, “Recent advances in carbon nanotube-geopolymer composite,” Constr. Building Mater., 252, 118940 (2020).

    Article  CAS  Google Scholar 

  48. T. Gorzelańczyk and J. Hoła, “Pore structure of self-compacting concretes made using different super-plasticizers,” Arch. Civil Mechan. Eng., 11, 611 – 621 (2011).

    Article  Google Scholar 

  49. J. Plank and C. Hirsch, “Impact of zeta potential of early cement hydration phases on superplasticizer adsorption,” Cement Concrete Res., 37, 537 – 542 (2007).

    Article  CAS  Google Scholar 

  50. G. Yakovlev, G. Pervushin, I. Maeva, et al., “Modification of construction materials with multi-walled carbon nanotubes,” Proc. Eng., 57, 407 – 413 (2013).

    Article  CAS  Google Scholar 

  51. I. Pundiene, I. Pranckeviciene, and C. Zhu, “Effect of molarity and temperature of alkaline activator solution on the rheological properties and structure formation of alkali-activated refractory materials,” Glass Ceram., 77(1 – 2), 51 – 56 (2020).

    Article  CAS  Google Scholar 

  52. L. Dembovska, I. Pundiene, D. Bajare, and G. Bumanis, “Effect of the ratio SiO2/Al2O3 on the structure, properties, and thermal stability of geopolymer refractory materials,” Glass Ceram., 75(3 – 4), 112 – 117 (2018).

    Article  CAS  Google Scholar 

  53. G. Ling, Z. Shui, T. Sun, et al., “Rheological behavior and microstructure characteristics of SCC incorporating metakaolin and silica fume,” Materials, 11, 2576 (2018).

    Article  CAS  Google Scholar 

  54. R. Pouhet, M. Cyr, and R. Bucher, “Influence of the initial water content in flash calcined metakaolin-based geopolymer,” Constr. Building Mater., 201, 421 – 429 (2019).

    Article  CAS  Google Scholar 

  55. D.W. Zhang, D. M.Wang, Z. Liu, and F. Z. Xie, “Rheology, agglomerate structure, and particle shape of fresh geopolymer pastes with different NaOH activators content,” Constr. Building Mater., 187, 674 – 680 (2018).

    Article  CAS  Google Scholar 

  56. Z. Zhang, J. L. Provis, A. Reid, and H. Wang, “Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete,” Cement Concrete Comp., 62, 97 – 105 (2015).

    Article  CAS  Google Scholar 

  57. Z. Zhang, H.Wang, J. L. Provis, et al., “Quantitative kinetic and structural analysis of geopolymers. Part 1. The activation of metakaolin with sodium hydroxide,” Thermochim. Acta, 539, 23 – 33 (2012).

    Article  CAS  Google Scholar 

  58. C. Sadik, I. E. El Amrani, and A. Albizane, “Recent advances in silica-alumina refractory: Areview,” J. Asian Ceram. Soc., 2(2), 83 – 96 (2018).

    Article  Google Scholar 

  59. W. Li, Y. Zhang, N. Zhou, et al., “Research on the characterization of a porcelainised material fabricated by adding a small amount of anorthite chamotte,” Ceram. Int., 43(15), 12402 – 12407 (2017).

    Article  CAS  Google Scholar 

  60. C. N. Djangang, A. Elimbi, U. C. Melo, et al., “Sintering of clay-chamotte ceramic composites for refracttory bricks,” Ceram. Int., 34(5), 1207 – 1213 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Pundiene.

Additional information

Translated from Steklo i Keramika, No. 11, pp. 52 – 62, November, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pundiene, I., Pranckeviciene, J. & Kligys, M. High-Temperature, Lightweight, Alkali-Activated Materials with Multi-Walled Carbon Nanotubes as Additives. Glass Ceram 79, 473–481 (2023). https://doi.org/10.1007/s10717-023-00535-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-023-00535-3

Keywords

Navigation