Skip to main content
Log in

Preparation of Niobium(V) Oxide with Controlled Dispersity and Morphology

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

The effect of the annealing temperature and the chemical history of the precipitate on the morphology and phase composition of Nb2O5 powder was investigated. The precipitate Nb2O5· nH2O and gel-like niobium citrate were obtained by solution methods. The synthesis of niobium oxide was conducted at temperatures 600, 1000, and 1200°C. The products of synthesis were analyzed by means of x-ray diffraction, scanning electron microscopy, x-ray microscopy, and differential thermal and thermogravimetric analysis. The annealing of niobium citrate at 600°C makes it possible to obtain niobium oxide particles with average size equal to about 70 nm, which is 4 – 6 times smaller than Nb2O5 obtained from Nb2O5· nH2O precipitate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Sanghi, S. Raheja, A. Agarval, and V. Bhatnagar, “Influence of Nb2O5 on the structure, optical, and electrical properties of alkaline borate glasses,” Mater. Chem. Phys., 120(2–3), 381 – 386 (2010).

    Article  CAS  Google Scholar 

  2. T. Ichimura, “Niobium oxide in optical glass manufacture,” Niobium- Proceedings of the International Symposium, NY (1984), pp. 603 – 614.

  3. A. Masuno and H. Inoue, “High refractive index of 0.30La2O3–0.70Nb2O5 glass prepared by containerless processing,” Appl. Phys. Exp., 3(10), 102601 (2010).

    Article  Google Scholar 

  4. S. S. Redozubov, E. A. Nenasheva, I. M. Gaidamaka, and N. V. Zaitseva, “Low-temperature ceramic materials based on pyrochlore compounds in the Bi2O3–ZnO–Nb2O5 system,” Inorg. Mater., 56(1), 77 – 82 (2020).

    Article  CAS  Google Scholar 

  5. E. A. Nenasheva, S. S. Redozubov, N. F. Kartenko, and I. M. Gaidamaka, “Microwave dielectric properties and structure of ZnO–Nb2O5–TiO2 ceramics,” J. Eurp. Ceram. Soc., 31(6), 1097 – 1102 (2011).

    Article  CAS  Google Scholar 

  6. C. L. Yeh and H. J. Wang, “Preparation of borides in Nb–B and Cr–B systems by combustion synthesis involving borothermic reduction of Nb2O5 and Cr2O3 ,” J. Alloys Compd., 490(1 – 2), 366 – 371 (2010).

  7. Ö. Balcý, D. Aðaoðullarý, M. L. Öveçoðlu, and Ý. V. Duman, “Synthesis of niobium borides by powder metallurgy methods using Nb2O5, B2O3 and Mg blends,” Trans. Nonfer. Met. Soc. China, 26(3), 747 – 758 (2016).

    Article  Google Scholar 

  8. A. Gupta, V. Singhal, O. P. Pandey, “Facile in-situ synthesis of NbB2 nanoparticles at low temperature,” J. Alloys Compd., 736, 306 – 313 (2018).

    Article  CAS  Google Scholar 

  9. G. Falk, M. Borlaf, M. J. López-Muñoz, et al., “Microwave-assisted synthesis of Nb2O5 for photocatalytic application of nanopowders and thin films,” J. Mater. Res., 32(17), 3271 – 3278 (2017).

    Article  CAS  Google Scholar 

  10. O. F. Lopes, E. C. Paris, and C. Ribeiro, “Synthesis of Nb2O5 nanoparticles through the oxidant peroxide method applied to organic pollutant photodegradation: A mechanistic study,” Appl. Catal. B: Environmental, 144, 800 – 808 (2014).

    Article  CAS  Google Scholar 

  11. T. Shishido, T. Miyatake, K. Teramura, et al., “Mechanism of photooxidation of alcohol over Nb2O5 ,” J. Phys. Chem. C, 113(43), 18713 – 18718 (2009).

    Article  CAS  Google Scholar 

  12. A. M. Raba, J. Bautista-Ruíz, and M. R. Joya, “Synthesis and structural properties of niobium pentoxide powders: A comparative study of the growth process,” Mater. Res., 19(6), 1381 – 1387 (2016).

    Article  CAS  Google Scholar 

  13. R. A. Rani, A. S. Zoolfakar, M. F. M. Ryeeshyam, et al., “High surface area to volume ratio 3D nanoporous Nb2O5 for enhanced humidity sensing,” J. Electronic Mater., 48(6), 3805 – 3815 (2019).

    Article  Google Scholar 

  14. N. P. De Moraes, R. Bacani, M. L. C. P. Da Silva, et al., “Effect of Nb/C ratio in the morphological, structural, optical, and photocatalytic properties of novel and inexpensive Nb2O5 /carbon xerogel composites,” Ceramics Int., 44(6), 6645 – 6652 (2018).

    Article  Google Scholar 

  15. R. Panetta, A. Latini, I. Pettiti, et al., “Synthesis and characterization of Nb2O5 mesostructures with tunable morphology and their application in dye-sensitized solar cells,” Mater. Chem. Phys., 202, 289 – 301 (2017).

    Article  CAS  Google Scholar 

  16. H. Luo, W. Song, P. G. Hoertz, et al., “A sensitized Nb2O5 photoanode for hydrogen production in a dye-sensitized photoelectrosynthesis cell,” Chem. Mater., 25(2), 122 – 131 (2013).

    Article  CAS  Google Scholar 

  17. C. L. Ücker, L. T. Gularte, C. D. Fernandes, et al., “Investigation of the properties of niobium pentoxide for use in dye-sensitized solar cells,” J. Am. Ceram. Soc., 102(4), 1884 – 1892 (2019).

    Google Scholar 

  18. K. Su, H. Liu, Gao Z., et al., “Nb2O5-based photocatalysts,” Adv. Sci., 8(8), 2003156 (2021).

    Article  CAS  Google Scholar 

  19. S. Li, Q. Xu, E. Uchaker, et al., “Comparison of amorphous, pseudohexagonal and orthorhombic Nb2O5 for high-rate lithium ion insertion,” Cryst. Eng. Comm., 18(14), 2532 – 2540(2016).

    Article  CAS  Google Scholar 

  20. I. Nowak and M. Ziolek, “Niobium compounds: preparation, characterization, and application in heterogeneous catalysis,” Chem. Rev., 99(12), 3603 – 3624 (1999).

    Article  CAS  Google Scholar 

  21. E. I. Ko and J. G. Weissman, “Structures of niobium pentoxide and their implications on chemical behavior,” Catalysis Today, 8(1), 27 – 36 (1990).

    Article  CAS  Google Scholar 

  22. J. Liao, R. Tan, Z. Kuang, et al., “Controlling the morphology, size and phase of Nb2O5 crystals for high electrochemical performance,” Chinese Chem. Lett., 29(12), 1785 – 1790 (2018).

    Article  CAS  Google Scholar 

Download references

This work was performed with financial support by the Russian Science Foundation within the framework of scientific project No. 19-73-10180 using equipment from the engineering center of St. Petersburg State Technical University (TU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Nesmelov.

Additional information

Translated from Steklo i Keramika, No. 1, pp. 31 – 38, January, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubeva, N.K., Danilovich, D.P., Nesmelov, D.D. et al. Preparation of Niobium(V) Oxide with Controlled Dispersity and Morphology. Glass Ceram 79, 22–27 (2022). https://doi.org/10.1007/s10717-022-00447-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-022-00447-8

Keywords

Navigation