S. Chen, X. Shu, F. Luo, H. Dong, C. Xu, B. Li, D. Shao, and X. Lu, “Rapid vitrification of simulated Sr2+ radioactive contaminated soil for nuclear emergencies,” J. Radioanal. Nucl. Chem., 319, 115 – 121 (2019); https://doi.org/10.1007/s10967-018-6313-3.
CAS
Article
Google Scholar
J. Dragun, “Geochemistry and soil chemistry reactions occurring during in situ vitrification,” J. Hazard. Mater., 26, 343 – 364 (1991); https://doi.org/10.1016/0304-3894(91)85029-M.
CAS
Article
Google Scholar
H. Tang, Y. Li, W. Huang, S. Chen, and X. Lu, “Chemical behavior of uranium contaminated soil solidified by microwave sintering,” J. Radioanal. Nucl. Chem., 322, 2109 – 2117 (2019); https://doi.org/10.1007/s10967-019-06835-9.
CAS
Article
Google Scholar
S. Gin, P. Jollivet, M. Tribet, S. Peuget, and S. Schuller, “Radionuclides containment in nuclear glasses: an overview,” Radiochim. Acta, 105, 927 – 959 (2017); https://doi.org/10.1515/ract-2016-2658.
CAS
Article
Google Scholar
Guilin Wei, Minghe Shi, and Chen Xu, “Mechanical and leaching properties of neodymium-contaminated soil glass-ceramics,” J. Am. Ceram. Soc., 104(6), 2521 – 2529 (2021); https://doi.org/10.1111/jace.17713.
CAS
Article
Google Scholar
C. Prakash, S. Singh, A. Basak, G. Królczyk, A. Pramanik, L. Lamberti, and C. I. Pruncu, “Processing of Ti50Nb50–xHAx composites by rapid microwave sintering technique for biomedical applications,” J. Mater. Res. Technol., 9(1), 242 – 252 (2020).
CAS
Article
Google Scholar
M. Oghbaei and O. Mirzaee, “Microwave versus conventional sintering: A review of fundamentals, advantages and applications,” J. Alloys Compd., 494, 175 – 189 (2010); https://doi.org/10.1016/j.jallcom.2010.01.068.
CAS
Article
Google Scholar
S. Zhang, Y. Ding, X. Lu, X. Mao, and M. Song, “Rapid and efficient disposal of radioactive contaminated soil using microwave sintering method,” Mater. Lett., 175, 165 – 168 (2016); https://doi.org/10.1016/j.matlet.2016.04.018.
S. Zhang, X. Shu, S. Chen, H. Yang, C. Hou, X. Mao, F. Chi, M. Song, and X. Lu, “Rapid immobilization of simulated radioactive soil waste by microwave sintering,” J. Hazard. Mater., 337, 20 – 26 (2017); https://doi.org/10.1016/j.jhazmat.2017.05.003.
CAS
Article
Google Scholar
X. Shu, Y. Li, W. Huang, S. Chen, C. Xu, S. Zhang, B. Li, X. Wang, Q. Qing, and X. Lu, “Rapid vitrification of uraniumcontaminated soil: Effect and mechanism,” Environ. Pollut., 263 (2020); https://doi.org/10.1016/j.envpol.2020.114539.
X. Shu, S. Chen, W. Huang, B. Li, and X. Lu, “Immobilization of simulated An4+ in radioactive contaminated clay via microwave sintering,” Mater. Chem. Phys., 254, 123534 (2020); https://doi.org/10.1016/j.matchemphys.2020.123534.
CAS
Article
Google Scholar
G. Wen, K. Zhang, H. Zhang, Y. Teng, and Y. Zhou, “Immobilization and aqueous durability of Nd2O3 and CeO2 incorporation into rutile TiO2,” Ceram. Int., 41, 6869 – 6875 (2015);. https://doi.org/10.1016/j.ceramint.2015.01.137.
CAS
Article
Google Scholar
A. H. Naik, S. B. Deb, A. B. Chalke, et al. “Microwave-assisted low temperature synthesis of sodium zirconium phosphate (NZP) and the leachability of some selected fission products incorporated in its structure – A case study of leachability of cesium[ J],” J. Chem. Sci., 122(1), 71 – 82 (2010); https://doi.org/10.1007/s12039-010-0009-8.
CAS
Article
Google Scholar
ASTM C1285-14, Standard Test Methods for Determining Chemical Durability of Nuclear, Hazardous, and Mixed Waste Glasses and Multiphase Glass Ceramics: The Product Consistency Test (PCT), ASTM International, West Conshohocken, PA, 2014.
N. Raje, D. K. Ghonge, G. V. S. Hemantha Rao, and A. V. R. Reddy, “Impurity characterization of magnesium diuranate using simultaneous TG–DTA–FTIR measurements,” J. Nucl. Mater., 436, 40 – 46 (2013); https://doi.org/10.1016/j.jnucmat.2013.01.289.
John Adams, “Advances in the characterization of industrial minerals,” Elements, 6, 128 (2011).
Google Scholar
K. Aasly, Properties and Behavior of Quartz for the Silicon Process, Thesis for the Degree of Philosophiae Doctor, Norwegian University of Science and Technology, Faculty of Engineering Science and Technology, Department of Geology and Mineral Resources Engineering (2008).
M. Karhu, J. Lagerbom, S. Solismaa, M. Honkanen, A. Ismailov, M.-L. Räisänen, E. Huttunen-Saarivirta, E. Levänen, and P. Kivikytö-Reponen, “Mining tailings as raw materials for reaction- sintered aluminosilicate ceramics: Effect of mineralogical composition on microstructure and properties,” Ceram. Int., 45, 4840 – 4848 (2019); https://doi.org/10.1016/j.ceramint.2018.11.180.
Y. Guo, Y. Li, F. Cheng, M. Wang, and X. Wang, “Role of additives in improved thermal activation of coal fly ash for alumina extraction,” Fuel Process. Technol., 110, 114 – 121 (2013); https://doi.org/10.1016/j.fuproc.2012.12.003.
CAS
Article
Google Scholar
X. Shu, Y. Li, W. Huang, S. Chen, C. Xu, S. Zhang, B. Li, Y. Wang, X. Wang, Q. Qing, and X. Lu, “Solubility of Nd3+ and Ce4+ in co-doped simulated radioactive contaminated soil after microwave vitrification,” Ceram. Int., 46, 6767 – 6773 (2020); https://doi.org/10.1016/j.ceramint.2019.11.167.
M. A. Vicente-Rodríguez, M. Suarez, M. Angel, and J. D. D. Lopez-Gonzalez, “Comparative FT-IR study of the removal of octahedral cations and structural modifications during acid treatment of several silicates,” Spectrochim. Acta. Part A. Molecular & Biomolecular Spectroscopy, 52, 1685 – 1694 (1996); https://doi.org/10.1016/S0584-8539(96)01771-0.
Article
Google Scholar
L. Y. Liang, Z. M. Liu, H. T. Cao, and X. Q. Pan, “Microstructural, optical, and electrical properties of SnO thin films prepared on quartz via a two-step method,” ACS Appl. Mater. Interfaces, 2, 1060 – 1065 (2010); https://doi.org/10.1021/am900838z.
CAS
Article
Google Scholar
L. Vidal, E. Joussein, M. Colas, J. Cornette, J. Sanz, I. Sobrados, J. L. Gelet, J. Absi, and S. Rossignol, “Controlling the reactivity of silicate solutions: A FTIR, Raman and NMR study,” Colloids Surf., A: Physicochem. Eng. Aspects, 503, 101 – 109 (2016); https://doi.org/10.1016/j.colsurfa.2016.05.039.
CAS
Article
Google Scholar
S. A. Macdonald, C. R. Schardt, D. J. Masiello, and J. H. Simmons, “Dispersion analysis of FTIR reflection measurements in silicate glasses,” J. Non-Cryst. Solids, 275, 72 – 82 (2000); https://doi.org/10.1016/S0022-3093(00)00121-6.
CAS
Article
Google Scholar
L. Truffault, M. T. Ta, T. Devers, K. Konstantinov, V. Harel, C. Simmonard, C. Andreazza, I. P. Nevirkovets, A. Pineau, and O. Veron, “Application of nanostructured Ca doped CeO2 for ultraviolet filtration,” Mater. Res. Bull., 45, 527 – 535 (2010); https://doi.org/10.1016/j.materresbull.2010.02.008.
H. Zhu, F. Wang, Q. Liao, et al. “Structure features, crystallization kinetics and water resistance of borosilicate glasses doped with CeO2[J],” J. Non-Cryst. Solids, 518, 57 – 65 (2019); https://doi.org/10.1016/j.jnoncrysol.2019.04.044.
CAS
Article
Google Scholar
Y. J. Li, J. X. Liu, and D. H. He, “Catalytic synthesis of glycerol carbonate from biomass-based glycerol and dimethyl carbonate over Li–La2O3 catalysts,” Appl. Catal., A, General, 564, 234 – 242 (2018); https://doi.org/10.1016/j.apcata.2018.07.032.
CAS
Article
Google Scholar
A. Wahid, A. M. Asiri, and M. M. Rahman, “One-step facile synthesis of Nd2O3/ZnO nanostructures for an efficient selective 2,4-dinitrophenol sensor probe,” Appl. Surf. Sci., 487, 1253 – 1261 (2019); https://doi.org/10.1016/j.apsusc.2019.05.107.
CAS
Article
Google Scholar
B. Glorieux, R. Berjoan, M. Matecki, A. Kammouni, and D. Perarnau, “XPS analyses of lanthanides phosphates,” Appl. Surf. Sci., 253, 3349 – 3359 (2007); https://doi.org/10.1016/j.apsusc.2006.07.027.
CAS
Article
Google Scholar
M. I. Ojovan and W. E. Lee, “Glassy wasteforms for nuclear waste immobilization,” Metall. Mater. Trans. A, 42, 837 – 851 (2011).
CAS
Article
Google Scholar