Skip to main content

Rapid Vitrification of Uranium Tailings Via Microwave Sintering: Mechanism and Chemical Durability

The safe treatment of radionuclide-contaminated soil in uranium tailings is of critical importance. In this work, neodymium- and cerium-contaminated soil in uranium tailings were successfully immobilized via microwave sintering to form glasses with the addition of Na2CO3. The phase evolution and chemical durability of the as-prepared vitrified forms were systematically investigated using various spectroscopic and microscopic techniques. The results indicated that Nd and Ce could be fixed in glass structures, and the ultimate solid solubility of Nd and Ce reached 15 and 5 wt.%, respectively, with 20 wt.% Na2CO3 added. These samples were sintered at 1200°C for 40 min, and the solidified samples exhibited homogeneous elemental distribution. Moreover, the sintered matrices exhibited excellent chemical durability. The normalized leaching rates of Ce and Nd after 42 days were maintained at low values (~ 10 – 6 – 10–7 g ∙ m– 2 ∙ day–1).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. S. Chen, X. Shu, F. Luo, H. Dong, C. Xu, B. Li, D. Shao, and X. Lu, “Rapid vitrification of simulated Sr2+ radioactive contaminated soil for nuclear emergencies,” J. Radioanal. Nucl. Chem., 319, 115 – 121 (2019);

    CAS  Article  Google Scholar 

  2. J. Dragun, “Geochemistry and soil chemistry reactions occurring during in situ vitrification,” J. Hazard. Mater., 26, 343 – 364 (1991);

    CAS  Article  Google Scholar 

  3. H. Tang, Y. Li, W. Huang, S. Chen, and X. Lu, “Chemical behavior of uranium contaminated soil solidified by microwave sintering,” J. Radioanal. Nucl. Chem., 322, 2109 – 2117 (2019);

    CAS  Article  Google Scholar 

  4. S. Gin, P. Jollivet, M. Tribet, S. Peuget, and S. Schuller, “Radionuclides containment in nuclear glasses: an overview,” Radiochim. Acta, 105, 927 – 959 (2017);

    CAS  Article  Google Scholar 

  5. Guilin Wei, Minghe Shi, and Chen Xu, “Mechanical and leaching properties of neodymium-contaminated soil glass-ceramics,” J. Am. Ceram. Soc., 104(6), 2521 – 2529 (2021);

    CAS  Article  Google Scholar 

  6. C. Prakash, S. Singh, A. Basak, G. Królczyk, A. Pramanik, L. Lamberti, and C. I. Pruncu, “Processing of Ti50Nb50–xHAx composites by rapid microwave sintering technique for biomedical applications,” J. Mater. Res. Technol., 9(1), 242 – 252 (2020).

    CAS  Article  Google Scholar 

  7. M. Oghbaei and O. Mirzaee, “Microwave versus conventional sintering: A review of fundamentals, advantages and applications,” J. Alloys Compd., 494, 175 – 189 (2010);

    CAS  Article  Google Scholar 

  8. S. Zhang, Y. Ding, X. Lu, X. Mao, and M. Song, “Rapid and efficient disposal of radioactive contaminated soil using microwave sintering method,” Mater. Lett., 175, 165 – 168 (2016);

  9. S. Zhang, X. Shu, S. Chen, H. Yang, C. Hou, X. Mao, F. Chi, M. Song, and X. Lu, “Rapid immobilization of simulated radioactive soil waste by microwave sintering,” J. Hazard. Mater., 337, 20 – 26 (2017);

    CAS  Article  Google Scholar 

  10. X. Shu, Y. Li, W. Huang, S. Chen, C. Xu, S. Zhang, B. Li, X. Wang, Q. Qing, and X. Lu, “Rapid vitrification of uraniumcontaminated soil: Effect and mechanism,” Environ. Pollut., 263 (2020);

  11. X. Shu, S. Chen, W. Huang, B. Li, and X. Lu, “Immobilization of simulated An4+ in radioactive contaminated clay via microwave sintering,” Mater. Chem. Phys., 254, 123534 (2020);

    CAS  Article  Google Scholar 

  12. G. Wen, K. Zhang, H. Zhang, Y. Teng, and Y. Zhou, “Immobilization and aqueous durability of Nd2O3 and CeO2 incorporation into rutile TiO2,” Ceram. Int., 41, 6869 – 6875 (2015);.

    CAS  Article  Google Scholar 

  13. A. H. Naik, S. B. Deb, A. B. Chalke, et al. “Microwave-assisted low temperature synthesis of sodium zirconium phosphate (NZP) and the leachability of some selected fission products incorporated in its structure – A case study of leachability of cesium[ J],” J. Chem. Sci., 122(1), 71 – 82 (2010);

    CAS  Article  Google Scholar 

  14. ASTM C1285-14, Standard Test Methods for Determining Chemical Durability of Nuclear, Hazardous, and Mixed Waste Glasses and Multiphase Glass Ceramics: The Product Consistency Test (PCT), ASTM International, West Conshohocken, PA, 2014.

  15. N. Raje, D. K. Ghonge, G. V. S. Hemantha Rao, and A. V. R. Reddy, “Impurity characterization of magnesium diuranate using simultaneous TG–DTA–FTIR measurements,” J. Nucl. Mater., 436, 40 – 46 (2013);

  16. John Adams, “Advances in the characterization of industrial minerals,” Elements, 6, 128 (2011).

    Google Scholar 

  17. K. Aasly, Properties and Behavior of Quartz for the Silicon Process, Thesis for the Degree of Philosophiae Doctor, Norwegian University of Science and Technology, Faculty of Engineering Science and Technology, Department of Geology and Mineral Resources Engineering (2008).

  18. M. Karhu, J. Lagerbom, S. Solismaa, M. Honkanen, A. Ismailov, M.-L. Räisänen, E. Huttunen-Saarivirta, E. Levänen, and P. Kivikytö-Reponen, “Mining tailings as raw materials for reaction- sintered aluminosilicate ceramics: Effect of mineralogical composition on microstructure and properties,” Ceram. Int., 45, 4840 – 4848 (2019);

  19. Y. Guo, Y. Li, F. Cheng, M. Wang, and X. Wang, “Role of additives in improved thermal activation of coal fly ash for alumina extraction,” Fuel Process. Technol., 110, 114 – 121 (2013);

    CAS  Article  Google Scholar 

  20. X. Shu, Y. Li, W. Huang, S. Chen, C. Xu, S. Zhang, B. Li, Y. Wang, X. Wang, Q. Qing, and X. Lu, “Solubility of Nd3+ and Ce4+ in co-doped simulated radioactive contaminated soil after microwave vitrification,” Ceram. Int., 46, 6767 – 6773 (2020);

  21. M. A. Vicente-Rodríguez, M. Suarez, M. Angel, and J. D. D. Lopez-Gonzalez, “Comparative FT-IR study of the removal of octahedral cations and structural modifications during acid treatment of several silicates,” Spectrochim. Acta. Part A. Molecular & Biomolecular Spectroscopy, 52, 1685 – 1694 (1996);

    Article  Google Scholar 

  22. L. Y. Liang, Z. M. Liu, H. T. Cao, and X. Q. Pan, “Microstructural, optical, and electrical properties of SnO thin films prepared on quartz via a two-step method,” ACS Appl. Mater. Interfaces, 2, 1060 – 1065 (2010);

    CAS  Article  Google Scholar 

  23. L. Vidal, E. Joussein, M. Colas, J. Cornette, J. Sanz, I. Sobrados, J. L. Gelet, J. Absi, and S. Rossignol, “Controlling the reactivity of silicate solutions: A FTIR, Raman and NMR study,” Colloids Surf., A: Physicochem. Eng. Aspects, 503, 101 – 109 (2016);

    CAS  Article  Google Scholar 

  24. S. A. Macdonald, C. R. Schardt, D. J. Masiello, and J. H. Simmons, “Dispersion analysis of FTIR reflection measurements in silicate glasses,” J. Non-Cryst. Solids, 275, 72 – 82 (2000);

    CAS  Article  Google Scholar 

  25. L. Truffault, M. T. Ta, T. Devers, K. Konstantinov, V. Harel, C. Simmonard, C. Andreazza, I. P. Nevirkovets, A. Pineau, and O. Veron, “Application of nanostructured Ca doped CeO2 for ultraviolet filtration,” Mater. Res. Bull., 45, 527 – 535 (2010);

  26. H. Zhu, F. Wang, Q. Liao, et al. “Structure features, crystallization kinetics and water resistance of borosilicate glasses doped with CeO2[J],” J. Non-Cryst. Solids, 518, 57 – 65 (2019);

    CAS  Article  Google Scholar 

  27. Y. J. Li, J. X. Liu, and D. H. He, “Catalytic synthesis of glycerol carbonate from biomass-based glycerol and dimethyl carbonate over Li–La2O3 catalysts,” Appl. Catal., A, General, 564, 234 – 242 (2018);

    CAS  Article  Google Scholar 

  28. A. Wahid, A. M. Asiri, and M. M. Rahman, “One-step facile synthesis of Nd2O3/ZnO nanostructures for an efficient selective 2,4-dinitrophenol sensor probe,” Appl. Surf. Sci., 487, 1253 – 1261 (2019);

    CAS  Article  Google Scholar 

  29. B. Glorieux, R. Berjoan, M. Matecki, A. Kammouni, and D. Perarnau, “XPS analyses of lanthanides phosphates,” Appl. Surf. Sci., 253, 3349 – 3359 (2007);

    CAS  Article  Google Scholar 

  30. M. I. Ojovan and W. E. Lee, “Glassy wasteforms for nuclear waste immobilization,” Metall. Mater. Trans. A, 42, 837 – 851 (2011).

    CAS  Article  Google Scholar 

Download references


We thank Suzanne Adam, PhD, from Liwen Bianji, Edanz Editing China (, for editing the English text of a draft of this manuscript.


This work was supported by the Research and Development Program in key areas of Hunan Province (No. 2019SK2011), the Hunan Provincial Innovation Foundation for Postgraduates (No. CX20190711), the National Natural Science Foundation of China (No. 11875164), the National Defense Military Industry Project of China (No. JSZL2019403C001 and No. JSZL2017403B008), “The Thirteenth Five-Year Plan” Basic Technological Research Project (No. JSZL2018403B001), the Evaluation of Radioactive Effect of Soil Remediation in Mining and Metallurgy (No. JD201924), the Innovation Leading Plan of Hunan Province (No. 2020SK2024), and the Outstanding Youth Project of Hunan Province (No. 18B266).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Yupeng Xie.

Additional information

Abstract published in Steklo i Keramika, No. 12, pp. 41 – 42, December, 2021.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Shi, K., Zhang, Q. et al. Rapid Vitrification of Uranium Tailings Via Microwave Sintering: Mechanism and Chemical Durability. Glass Ceram 78, 497–505 (2022).

Download citation

  • Published:

  • Issue Date:

  • DOI:

Key words

  • uranium tailings
  • microwave sintering
  • radionuclide
  • chemical durability