Skip to main content

Investigation of Laser Technology for Cutting Mica

The results of an investigation of the process of cutting mica using ultrashort pulsed pico- and femtosecond laser radiation with wavelength 1030 nm are reported. The pulses were focused by a lens with a small numerical aperture (numerical aperture < 0.1). Optimization of the conditions for achieving large-scale processing without micron-size microcracks along the edges and walls is performed at different pulse durations, pulse energies, and scanning speeds. Samples with thickness 0.1 – 0.2 mm were cut out, and the desired result was achieved without visible heat-affected zones. It was determined that when mica processing is needed in mass production it is essential to use a system for real-time tracking of the sample surface in order to adjust the position of the focus on the entire sheet.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. V. S. Kondratenko and O. N. Tret’yakova, Problems of the Development of New Laser Technologies [in Russian], Izd. MAI, Moscow (2018).

  2. V. S. Kondratenko, V. V. Kadomkin, Lu Hung-Tu, et al., “Technology of laser immersion processing of materials,” Pribory, No. 4, 1 – 8 (2020).

  3. P. Boerner, M. Hajri, T. Wahl, et al., “Picosecond pulsed laser ablation of dielectric rods: Angle-dependent ablation process model for laser micromachining,” J. Appl. Phys., 125, 234902 (2019).

    Article  Google Scholar 

  4. E. N. Glezer and E. Mazur, “Optically produced cross patterning, based on local dislocations inside MgO single crystals,” Appl. Phys. Lett., 71, 882 (1997).

    CAS  Article  Google Scholar 

  5. M. Lenzner, J. Krüger, S. Sartania, et al., “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett., 80, 4076 (1998).

    CAS  Article  Google Scholar 

  6. Yunxiang Pan, Xueming Lv, Hongchao Zhang, et al., “Millisecond laser machining of transparent materials assisted by a nanosecond laser with different delays,” Opt. Lett., 41(12), 2807 – 2810 (2016).

    CAS  Article  Google Scholar 

  7. H. Varel, D. Ashkenasi, A. Rosenfeld, et al., “Micromachining of quartz with ultrashort pulses,” Appl. Phys. A, 65(4), 367 – 373 (1997).

    CAS  Article  Google Scholar 

  8. T. Q. Jia, Z. Z. Xu, R. X. Li, and H. Z. Wang, “Mechanisms in fsec-laser ablation in fused silica,” J. Appl. Phys., 95, 5166 (2004).

    CAS  Article  Google Scholar 

  9. S. Nolte, C. Momma, H. Jacobs, et al., “Ablation of metals by ultrashort laser pulses,” J. Optical Soc. Am. B, 14(10), 2716 – 2722 (1997).

    CAS  Article  Google Scholar 

  10. P. P. Pronko, S. K. Dutta, J. Squier, et al., “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Optics Comm. 114, 106 (1995).

    CAS  Article  Google Scholar 

  11. S. Maruo and S. Kawata, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” J. Microelectromech. Syst., 7, 411 (1998).

    CAS  Article  Google Scholar 

  12. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys., 106(5), 1101 – 1115 (2009).

    Article  Google Scholar 

  13. D. von der Linde and K. Sokolowski-Tinten, “The physical mechanisms of short-pulse laser ablation,” Appl. Surf. Sci., 154 – 155, 1 – 10 (2000).

    Article  Google Scholar 

  14. N. I. Smith, K. Fujita, O. Nakamura, and S. Kawata, “Generation of calcium waves in living cells by pulsed-laser-induced photodisruption,” Appl. Phys. Lett., 78(8), 1209 – 1210 (2001).

    Google Scholar 

  15. V. Mizeikis, S. Juodkazis, A. Marcinkevièius, et al., “Tailoring and characterization of photonic crystals,” Photochem. Rev., 2(1), 35 – 69 (2001).

    CAS  Article  Google Scholar 

  16. H.-B. Sun, Y. Xu, S. Juodkazis, et al., “Arbitrary-lattice photonic crystals created by multiphoton microfabrication,” Opt. Lett., 26(6), 325 – 332 (2001).

    CAS  Article  Google Scholar 

  17. X.-Z. Dong, Z. Zhao, X.-M. Duan, and T. Kondo, “Micronanofabrication of assembled three-dimensional microstructures by designable multiple beams multiphoton processing,” Appl. Phys. Lett., 91(12), 4103 (2007).

    Article  Google Scholar 

  18. T. Kaino, “Waveguide fabrication using organic nonlinear optical materials,” J. Opt. A: Pure Appl. Opt. 2(4), R1 – R7 (2000).

    CAS  Article  Google Scholar 

  19. M. Miwa, S. Juodkazis, T. Kawakami, et al., “Femtosecond two-photon stereo-lithography,” Appl. Phys. A, 73(5), 561 – 565 (2001).

    CAS  Article  Google Scholar 

  20. E. N. Glezer, M. Milosavijevic, L. Huang, et al., “Three-dimensional optical storage inside transparent materials,” Opt. Lett., 21(24), 2023 – 2028 (1996).

    CAS  Article  Google Scholar 

  21. M. Watanabe, H.-B. Sun, S. Juodkazis, et al., “Three-dimensional optical data storage in vitreous silica,” Jpn. J. Appl. Phys., 37, L1527 – L1530 (1998).

    Article  Google Scholar 

  22. O. N. Tretyakova and G. Yu. Shevchenko, “Development of control programs for automation of laser-controlled thermal splitting of semiconductor and dielectric materials,” Vest. MAI, 18(6), 53 – 67 (2011).

    Google Scholar 

  23. A. E. Novinskii and G. Yu. Shevchenko, Program for Controlling Laser Processing Equipment for Cutting and Welding: Certificate of State Registration of the Computer Program No. 2013613967. Application No. 2012661679 [in Russian]; received on December 25, 2012; registered in the register of computer programs on April 22, 2013.

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to V. S. Kondratenko.

Additional information

Translated from Steklo i Keramika, No. 12, pp. 27 – 31, December, 2021.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kondratenko, V.S., Saprykin, D.L., Tretiyakova, O.N. et al. Investigation of Laser Technology for Cutting Mica. Glass Ceram 78, 486–489 (2022).

Download citation

  • Published:

  • Issue Date:

  • DOI:

Key words

  • laser cutting
  • picosecond laser
  • mica
  • laser systems
  • tracking of the surface