M. Tavoni, M. Dapporto, A. Tampieri, and S. Sprio, “Bioactive calcium phosphate-based composites for bone regeneration,” J. Composites Sci., No. 5, 227 – 254 (2021).
T. V. Safronova, “Inorganic materials for regenerative medicine,” Inorg. Mater., 57(5), 443 – 474 (2012) [Neorg. Mater., 57(5), 467 – 499 (2021)].
P. Dee, H. Y. You, S. H. Teoh, and H. Le Ferrand, “Bioinspired approaches to toughen calcium phosphate-based ceramics for bone repair,” J. Mechan. Behavior Biomed. Mater., No. 112, Article ID 104078 (2020).
S. M. Barinov and V. S. Komlev, “Approaches to the fabrication of calcium phosphate-based porous materials for bone tissue regeneration,” Inorg. Mater., 52(4), 339 – 346 (2016) [Neorg. Mater., 52(4), 383 – 391 (2016)].
J. Wang, M. Wang, and F. Chen, “Nano-hydroxyapatite coating promotes porous calcium phosphate ceramic-induced osteogenesis via BMP/Smad signaling pathway,” Int. J. Nanomedicine, 14, 7987 – 8000 (2019).
CAS
Article
Google Scholar
T. V. Safronova, S. A. Korneichuk, V. I. Putlyaev, and V. K. Krut’ko, “Ceramics based on calcium hydroxyapatite synthesized from calcium acetate, calcium hydroxide, and potassium hydrophosphate,” Glass Ceram., 69, No. 1 – 2, 30 – 36 (2012) [Steklo Keram., No. 1, 30 – 36 (2012)].
B. Huang, G. Caetano, C. Vyas, et al., “Polymer-ceramic composite scaffolds: the effect of hydroxyapatite and β-tricalcium phosphate,” Materials, 11(1), 129 – 142 (2018).
Article
Google Scholar
S. V. Dorozhkin, “Calcium orthophosphate-based bioceramics,” Materials, 6, 3840 – 3942 (2013).
CAS
Article
Google Scholar
V. K. Krut’ko, A. I. Kulak, O. N. Musskaya, and T. V. Safronova, “Thermal evolution of calcium phosphate ceramic foam obtained on the basis of hydroxyapatite and monocalcium phosphate monohydrate,” Fiz.-Khim. Aspekty Izuch. Klasterov, Nanostructur Nanometar., No. 11, 615 – 623 (2019).
M. Bohner, “Bioresorbable ceramics,” in: Degradation Rate of Bioresorbable Materials (2008), pp. 95 – 114.
H. Takadama, M. Hashimoto, M. Mizuno, and T. Kokubo, “Round-robin test of SBF for in vitro measurement of apatite-forming ability of synthetic materials,” Phosphorus Res. Bull., No. 17, 119 – 125 (2004).
Y. H. Chan, “Comparative in vitro osteoinductivity study of HA and α-TCP/HA bicalcium phosphate,” Int. J. Appl. Ceram. Tech., No. 12, 192 – 198 (2015).
N. Ozgür Engin and A. Cüneyt Tas, “Manufacture of macroporous calcium hydroxyapatite bioceramics,” J. Eurp. Ceramic Soc., 19, 2569 – 2572 (1999).
Article
Google Scholar
F. Çalýþkan, Z. Tatlý, and A. Sonkaya, “Fabrication of bioactive high porous hydroxyapatite ceramics,” APJES, III-IP, 8 – 13 (2015).
H. Yoshikawa, N. Tamai, Ts. Murase, and A. Myoui, “Interconnected porous hydroxyapatite ceramics for bone tissue engineering,” J. Royal Soc. Interface, 6, S341 – S348 (2009).
A. Iatsenko, O. Sych, and T. Tomila, “Effect of sintering temperature on structure and properties of highly porous glass-ceramics,” Proc. Appl. Ceram., 9(2), 99 – 105 (2015).
Article
Google Scholar
S. Deville, E. Saiz, and A. P. Tomsia, “Freeze casting of hydroxyapatite scaffolds for bone tissue engineering,” Biomaterials, 27(32), 5480 – 5489 (2006).
CAS
Article
Google Scholar
S. N. Gorodzha, M. A. Surmeneva, I. I. Selezneva, et al., “Investigation of the morphology and structure of porous hybrid 3D scaffolds based on polycaprolactone, including silicon-containing hydroxyapatite,” Pov-st’. Rentgen., Sinkhrotr. Neitr. Issled., No. 7, 92 – 102 (2018).
J. I. G. Ocampo, D. M. E. Sierra, and C. P. O. Orozco, “Porous bodies of hydroxyapatite produced by a combination of the gel-casting and polymer sponge methods,” J. Adv. Res., 7, 297 – 304 (2016).
Article
Google Scholar
V. K. Krut’ko, A. I. Kulak, O. N. Musskaya, et al., “Calcium phosphate foam ceramic based on hydroxyapatite – brushite powder mixture,” Glass Ceram., 76(3 – 4), 113 – 118 (2019) [Steklo Keram., No. 3, 38 – 44 (2019)].
V. K. Krut’ko, A. I. Kulak, O. N. Musskaya, et al., “Calcium phosphate foam ceramics with controlled bioactivity,” Fiz.-Khim. Aspekty Izuch. Klasterov, Nanostr. Nanomater., No. 10, 374 – 382 (2018).
Y. Huang, W. Huang, L. Sun, and Q. Wang, “Phase transition from α-TCP into β-TCP in TCP/HA composites,” Int. J. Appl. Ceram. Tech., 7(2), 184 – 188 (2010).
CAS
Article
Google Scholar
K.-T. Chua, Sh.-F. Ou, Sh.-Y. Chen, et al., “Research of phase transformation induced biodegradable properties on hydroxyapatite and tricalcium phosphate based bioceramic,” Ceram. Int., No. 39, 1455 – 1462 (2013).
L. Yubao, Zh. Xingdong, and K. de Groat, “Hydrolysis and phase transition of alpha-tricalcium phosphate,” Biomaterials, 18(10), 737 – 741 (1997).
Article
Google Scholar
G. Piga, A. Amarante, C. Makhoul, et al., “β-Tricalcium phosphate interferes with the assessment of crystallinity in burned skeletal remains,” J. Spectroscopy, Art. 5954146, 1 – 10 (2018).
H. A. Bethe, “Statistical theory of superlattices,” Proc. Royal Soc. A: Mathem., Phys. Eng. Sci., 150(871), 552 – 575 (1935).
CAS
Google Scholar
R. M. Hill and L. A. Dissado, “The temperature dependence of relaxation processes,” J. Phys. C: Solid State Phys., 15(25), 5171 – 5193 (1982).
CAS
Article
Google Scholar