E. N. Kablov, “New-generation materials — the basis of innovations, technological leadership, and national security of Russia,” Intellekt Teknol., No. 2(14), 16 – 21 (2016).
E. N. Kablov, “Formation of domestic space materials science,” Vest. RFFI, No. 3, 97 – 105 (2017).
E. N. Kablov, “At the crossroads of science, education, and industry,” Ékspert, No. 15(941), 49 – 53 (2015).
E. N. Kablov, A. S. Chainikova, N. E. Shchegoleva, et al., “Synthesis, structure, and properties of aluminosilicate glass ceramics modified by zirconium oxide,” Neorg. Mater., 56(10), 1123 – 1129 (2020).
Article
Google Scholar
E. N. Kablov, “New generation materials and digital technologies for their processing,” Vest. Ross. Akad. Nauk, 90(4), 331 – 334 (2020).
Google Scholar
E. N. Kablov, D. V. Grashchenkov, N. V. Isaeva, and S. S. Solntsev, “Promising high-temperature ceramic composite materials,” Zh. Ross. Khim. Obshchestva im. D. I. Mendeleeva, 54(1), 20 – 24 (2010).
CAS
Google Scholar
B. V. Shchetanov, “Tile material for the external high-temperature heat-shielding coating of the Buran orbital ship,” Aviats. Mater. Tekhnol., No. S1, 41 – 50 (2013).
Google Scholar
E. N. Kablov (ed.), Armor for Buran. Materials and Technologies of VIAM for the ISS Energiya–Buran [in Russian], Science and Life Foundation, Moscow (2013).
E. N. Kablov and B. V. Shetanov, “Fiber heat-insulating and heat-shielding materials: properties, areas of application,” in: Fundamental Problems of High-Speed Currents: Abstracts of Reports, International Scientific and Technical Conf., Zhukovskii, September 21 – 24, 2004 [in Russian], Zhukovskii (2004), pp. 95 – 96.
V. V. Kartashov, A. R. Beketov, and A. V. Vlasov, “Nanomodified oxide ceramic materials,” Khim. Tekhnol., 10(4), 211 – 214 (2009).
Google Scholar
S. Bhattarcharjee, R. K. Galgali, and S. K. Singh, “Preparation of zirconia-toughened mullite with dissociated zircon,” Minerals Metallurg. Proc., 18(4), 200 – 202 (2001).
Google Scholar
S. V. Chizhevskaya, A. V. Zhukov, O.M. Klimenko, et al., “Obtaining nanostructured powders of partially stabilized zirconium dioxide for ceramic with high mechanical strength,” Glass Ceram., 67(3 – 4), 114 – 117 (2010) [Steklo Keram., No. 4, 18 – 21 (2010)].
N. M. Varrik, Yu. A. Ivakhnenko, and V. G. Maksimov, “Oxideoxide composite materials for gas turbine engines (review),” Tr. VIAM: Elektron. Nauch.-Tekh. Zh., No. 8, Art. 3 (2014); URL: http://www.viam-works.ru (date of access: 07.12.2021); DOI https://doi.org/10.18577/2307-6046-2014-0-8-3-3.
E. S. Lukin, N. A. Makarov, A. I. Kozlov, et al., “Nanopowders for obtaining new-generation oxide ceramics,” Novye Ogneupory, No. 11, 29 – 34 (2009).
S. T. Mileiko, “16th International Conference on Composite Materials ICCM-16, July 8 – 13, 2007, Kyoto, Japan: Review,” Science for Production, No. 6, 2 – 4 (2007).
G. P. Sedmale, A. V. Khmelev, and I. E. Shperberg, “Influence of dispersion of ceramic powders on the properties of mullite-ZrO2 ceramics,” Ogneup. Tekh. Keram., No. 3, 24 – 30 (2010).
Yu. A. Ivakhnenko, B. V. Baruzdin, N. M. Varrik, and V. G. Maksimov, “High-temperature fibrous sealing materials,” Aviats. Mater. Tekhnol., No. S, 272 – 289 (2017); DOI https://doi.org/10.18577/2071-9140-2017-0-S-272-289.
V. G. Babashov, V. G. Maksimov, N.M. Varrik, and O. N. Samorodova, “Study of the structure and properties of ceramic composite materials based on mullite,” Aviats. Mater. Tekhnol., No. 1, 54 – 63 (2020); DOI https://doi.org/10.18577/2071-9140-2020-0-1-54-63.
N. V. Buchilin and G. Yu. Lyulyukina, “Features of sintering of highly porous ceramic materials based on aluminum oxide,” Aviats. Mater. Tekhnol., No. 4(45), 40 – 46 (2016); DOI https://doi.org/10.8577/2071-9140-2016-0-4-40-46.
A. V. Istomin and S. G. Kolyshev, “Electrostatic method of forming ultra-thin fibers of refractory oxides,” Aviats. Mater. Tekhnol., No. 2(55), 40 – 46 (2019); DOI https://doi.org/10.18577/2071-9140-2019-0-2-40-46.