Skip to main content

Microstructure Features of Metal-Matrix Composites Based on Thermoelectric Bismuth Telluride Matrix and Ferromagnetic Filler

The formative predictables of the microstructure of metal-matrix composites, obtained using spark plasma sintering and consisting of polycrystalline thermoelectric bismuth telluride Bi2Te3 (composite matrix) and a ferromagnetic filler (Ni or Fe), were examined. It was determined that, in the course of spark plasma sintering, filler inclusions in the form of locally gradient inclusions of the nucleus–shell type (Ni@NiTe2 and Fe@FeTe2) are formed and randomly distributed in the Bi2Te3 textured matrix. The basic parameters of the microstructure of composites (inclusion size and extent of texturing of the matrix) strongly depend on the filler content.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

References

  1. Yu. A. Kurganov and A. G. Kolmakov, Metal-Matrix Composite Materials for Construction [in Russian], Izd. MGTU im. N. É. Baumana, Moscow (2015).

  2. O. V. Mukbaniani, D. Balkose, H. Susanto, and A. K. Haghi (eds.), Composite Materials for Industry, Electronics, and the Environment: Research and Applications, Apple Academic Press, Palm Bay (2020).

  3. A. X. Chen, C. Yang, R. H. Wang, et al., “Effect of raw materials on the properties of coated Al2O3–Al metal-matrix composite materials via vacuum sintering method,” Key Eng. Mater., 858, 53 – 58 (2020).

    Article  Google Scholar 

  4. J. F. Xu, G. Y. Liu, L. Tang, et al., “Synthesis and electrical properties of Mo–ZrO2 metal-matrix composite,” Adv. Mater. Res., 311313, 2121 – 2126 (2011).

  5. S. Ordońez, L. Carvajal, V. Martínez, et al., “Fracture toughness of SiC–Cu based alloys metal-matrix composites,” Mater. Sci. Forum, 498 – 499, 350 – 356 (2005).

    Article  Google Scholar 

  6. A. Ali and A. Andriyana, “Properties of multifunctional composite materials based on nanomaterials: a review,” RSC Adv., 10, 16390 – 16403 (2020).

    CAS  Article  Google Scholar 

  7. W. Zhao, Z. Liu, P. Wei, et al., “Magnetoelectric interaction and transport behaviors in magnetic nanocomposite thermoelectric materials,” Nat. Nanotechnol., 12, 55 – 60 (2017).

    CAS  Article  Google Scholar 

  8. W. Zhao, Z. Liu, Z. Sun, et al., “Superparamagnetic enhancement of thermoelectric performance,” Nature, 13, 247 – 251 (2017).

    Article  Google Scholar 

  9. R. Lu, J. S. Lopez, Y. Liu, et al., “Coherent magnetic nanoinclusions induce charge localization in half-Heusler alloys leading to high Tc ferromagnetism and enhanced thermoelectric performance,” J. Mater. Chem. A, 7, 1095 – 11103 (2019).

    Google Scholar 

  10. M. Yaprintsev, A. Vasil’ev, O. Ivanov, et al., “Enhanced thermoelectric efficiency of the bulk composites consisting of ‘Bi2Te3 matrix’ and ‘Ni@NiTe2 filler inclusions’,” Scr. Mater., 194, 113710-1-4 (2021).

    Article  Google Scholar 

  11. M. Yaprintsev, A. Vasil’ev, O. Ivanov, et al., “Forming the locally gradient Ni@NiTe2 domains from initial Ni inclusions embedded into thermoelectric Bi2Te3 matrix,” Mater. Lett., 290, 129451-1-4 (2021).

    Article  Google Scholar 

  12. H. J. Goldsmid, “Bismuth telluride and its alloys as materials for thermoelectric generation,” Mater., 7, 2577 – 2592 (2014).

    CAS  Article  Google Scholar 

  13. S. D. Bhame, D. Pravarthana, W. Prellier, and J. G. Noudem, “Enhanced thermoelectric performance in spark plasma textured bulk n-type Bi2Te2.7Se0.3 and p-type Bi0.5Sb1.5Te3,” Appl. Phys. Lett., 102, 2190-1-3 (2013).

    Article  Google Scholar 

  14. X. A. Fan, J. Y. Yang, R. G. Chen, et al., “Characterization and thermoelectric properties of p-type 25% Bi2Te3 – 75% Sb2Te3 prepared via mechanical alloying and plasma activated sintering,” J. Phys. D. Appl. Phys., 39, 740 – 745 (2006).

    CAS  Article  Google Scholar 

  15. A. Vasil’ev, M. Yaprintsev, O. Ivanov, and E. Danshina, “Anisotropic thermoelectric properties of Bi1.9Lu0.1Te2.7Se0.3 textured via spark plasma sintering,” Sol. St. Sci., 84, 28 – 43 (2018).

    Article  Google Scholar 

  16. M. Yaprintsev, A. Vasil’ev, and O. Ivanov, “Thermoelectric properties of the textured Bi1.9Gd0.1Te3 compounds spark-plasma-sintered at various temperatures,” J. Europ. Cer. Soc., 40, 742 – 750 (2020).

    CAS  Article  Google Scholar 

  17. O. Ivanov, M. Yaprintsev, and A. Vasil’ev, “Comparative analysis of the thermoelectric properties of the non-textured and textured Bi1.9Gd0.1Te3 compounds,” J. Sol. St. Chem., 290, 121559-1-10 (2020).

    Article  Google Scholar 

Download references

This work was performed with the financial support of the RF Ministry of Education and Science under project No. 0625-2020-0015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Ivanov.

Additional information

Translated from Steklo i Keramika, No. 11, pp. 23 – 29, November, 2021.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ivanov, O.N., Yapryntsev, M.N., Vasil’ev, A.E. et al. Microstructure Features of Metal-Matrix Composites Based on Thermoelectric Bismuth Telluride Matrix and Ferromagnetic Filler. Glass Ceram 78, 442–447 (2022). https://doi.org/10.1007/s10717-022-00428-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-022-00428-x

Key words

  • metal-matrix composites
  • spark plasma sintering
  • thermoelectric properties
  • texturing
  • locally gradient inclusions