Skip to main content
Log in

Plasma Technology for Glass-Microspheres Production Based on Ferruginous Quartzite Tailings of the KMA

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

A technology was developed for producing in a plasma reactor glass microspheres using the ferruginous quartzite tailings of the Kursk Magnetic Anomaly [KMA]. The predictable effects of the plasma-forming argon-gas flow rate and the plasma reactor power on the fractional composition were determined. It is shown that on increasing the plasma-forming gas flow rate from 1.5 to 2.5 m3/h and the current strength from 400 to 500 A the fraction amount over 630 μm increases due to coagulation processes. It is shown that the glass microspheres are enriched in aluminum and calcium oxides and depleted of silicon, magnesium, sodium, potassium, and iron oxides. It is shown that at high plasma temperatures, of the order of 9000 – 12,000 K, the particles melt completely and spherical glass microspheres ranging in size from 80 to 1250 μm are formed. Operational metrics, such as microhardness, acid resistance, and alkali resistance, of the glass microspheres based on the ferruginous quartzite tailings of KMA were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. V. N. Makarov, Ecological Problems of the Recycling of Mining Waste: in 2 Pts., KNTs RAN, Appatity (1998), Pt. 1 and 2.

  2. V. A. Chanturia and B. M. Koryukin, “Analysis of technogenic mineral raw material of the Urals and the prospects for its processing,” in: Problems of Geotechnology and Mining Science (Melnikov Lectures): Reports at International Conference [in Russian], Izd. UrO RAN, Ekaterinburg (1998), Vol. 3, pp. 26 – 34.

  3. R. G. Melkonyan, D. V. Makarov, and O. V. Suvorova, Environmental Problems of Using Technogenic Raw Materials in the Production of Glass and Ceramic [in Russian], KNTs RAN, Apatity (2016).

    Google Scholar 

  4. V. N. Makarov, O. N. Krasheninnikov, B. I. Gurevich, et al., Construction and Technical Materials Produced from Mineral Raw Materials of the Kola Peninsula [in Russian], KNTs RAN, Apatity (2003), Pt. 1 and 2.

  5. V. V. Rusina, Mineral Binders Based on Large-tonnage Industrial Waste [in Russian], BrGU, Bratsk (2007).

    Google Scholar 

  6. R. G. Melkonyan, Amorphous Rocks and Glass Production [in Russian], NIA Priroda, Moscow (2002).

    Google Scholar 

  7. O. V. Kuzmina, V. I. Vereshchagin, and A. N. Abiyaka, Foam Glass-Ceramic Materials Based on Natural and Technogenic Raw Materials [in Russian], Izd. TPU, Tomsk (2014).

    Google Scholar 

  8. L. I. Dvorkin and O. L. Dvorkin, Building Materials Based on Industrial Waste [in Russian], Feniks, Rostov-on-Don (2007).

    Google Scholar 

  9. M. B. Sedelnikova and V. M. Pogrebenkov, Ceramic Pigments Based on Native and Technogenic Mineral Raw Materials [in Russian], Izd. TPU, Tomsk (2014).

    Google Scholar 

  10. A. Yu. Stolboushkin, A. A. Karpacheva, and A. I. Ivanov, Ceramic Wall Products Based on Tailings of Coal Beneficiation and Iron-Containing Additives [in Russian], Inter-Kuzbass, Novokuznetsk (2011).

    Google Scholar 

  11. V. S. Lesovik, Increasing the Efficiency of Building Materials Production Taking Account of Rock Genesis [in Russian], ASV, Moscow (2006).

    Google Scholar 

  12. A. A. Pak, O. N. Krasheninnikov, and R. N. Sukhorukova, Aerated Concrete Based on Technogenic Raw Materials of the Kola Mining Complex [in Russian], KNTs RAN, Appatity (2000).

    Google Scholar 

  13. B. I. Gurevich, V. N. Makarov, G. V. Seregin, et al., Concretes Based on Secondary Raw Materials [in Russian], KNTs RAN, Apatity (1997).

    Google Scholar 

  14. O. V. Suvorova, R. G. Melkonyan, I. V. Makarova, and D. V. Makarov, “Opportunities and prospects for the use of tailings of the mining complex for glass and glass-ceramic materials production,” Ekol. Prom. Proiz-va, No. 1, 54 – 60 (2011).

  15. V. N. Anisimov, “Waste-free processing of native-technogenic deposits with mobile technological complexes,” Gornaya Prom-st’, No. 4(86), 35 – 40 (2009).

  16. E. A. Kotenko, V. A. Morozov, V. N. Anisimov, and V. K. Kushnerenko, “Geoenvironmental problems of exploitation of the mining_metallurgical complex of the KMA,” Gornaya Prom-st’, No. 2, 12 – 16 (2003).

  17. K. G. Karapetyan, Technology of Fertilizers and Biosorbents Based on Phosphate Glasses, Author’s Abstract of Doctoral’s Thesis [in Russian], St. Petersburg (2020).

  18. K. Karapetian and N. Dzhevaga, “Modern technologies of complex processing of phosphates,” ARPN J. Eng. Appl. Sci., 12(15), 4588 – 4594 (2017).

    CAS  Google Scholar 

  19. K. Karapetyan and N. Dzhevaga, “Technology of processing of apatites in the production of fused phosphates as modern highly effective fertilizers,” in: 17th Intern. Multidisciplinary Scientific GeoConf. SGEM 2017, 29 June – 5 July, Albena, Bulgaria, SGEM 2017 Conference Proceedings 2017, Albena (2017), Vol. 17, No. 51, 939 – 946.

  20. N. I. Minko and I. I. Morozova, “Use of secondary and non-condensed raw materials in the technology of glass materials for construction purposes,” Vest. OSN RAASN, No. 13, 42 – 49 (2014).

  21. N. I. Min’ko, N. F. Zhernovaya, and E. V. Lisovik, “Constructional and container glasses based on artificial sands from Kursk Magnetic Anomaly quartzitic sandstones,” Glass Ceram., 46(12), 471 – 473 (1989) [Steklo Keram.,No. 12, 6 – 7 (1989)].

  22. N. I. Min’ko, N. A. Koval’chenko, Z. V. Pavlenko, and N. F. Zhernovaya, “Raw materials from the Kursk Magnetic Anomaly region: The basis of glass materials for electrical engineering,” Glass Ceram., 54(7), 202 – 204 (1997) [Steklo Keram., No. 7, 6 – 9 (1997)].

  23. A. I. Efimov, E. M. Zhukova, and V. P. Varlamov, “Effectiveness of mineralizing additives,” Stroit. Mater., No. 7, 24 – 25 (1984).

  24. A. I. Efimov and I. I. Nemets, “Regulation of the rheotechnological properties of clay masses with iron-containing waste,” Izv. Vyssh. Ucheb. Zaved., Stroit-vo, No. 10, 53 – 57 (2000).

  25. N. A. Shapovalov, L. Kh. Zagorodnyuk, I. V. Tikunova, et al., “Study on the possibility of using wastes from flotation of iron ores to obtain mixed cements,” Fundam. Issled., No. 10, 1718 – 1723 (2013).

  26. A. Yu. Shchekina, N. A. Shapovalov, and L. Kh. Zagorodnyuk, “Composite binders using waste from flotation re-enrichment of ferruginous quartzites,” Vest. BGTU im. V. G. Shukhova, No. 7, 139 – 143 (2017).

  27. V. P. Krokhin, V. S. Bessmertny, V. A. Panasenko, et al., “Glazed wall ceramics using KMA waste,” Glass Ceram., No. 7, 23 – 24 (1998).

  28. V. S. Bessmertnyi, N. I. Bondarenko, D. O. Bondarenko, et al., “Plasma technologies in glass production,” Glass Ceram., 76(7 – 8), 214 – 245 (2019) [Steklo Keram., No. 7, 3 – 7 (2019)].

  29. G. G. Volokitin, N. K. Skripnikova, Yu. A. Abzaev, et al., “Investigation of the processes occurring during the plasma-chemical synthesis of high-temperature silicate melts. Pt 1. Analysis of molybdenum ore dressing wastes,” Vest. TGASU, No. 4, 197 – 202 (2013).

  30. O. G. Volokitin, V. I. Vereshchagin, G. G. Volokitin, et al., “Production of silicate melts with a high silicate modulus from quartz-feldspar-containing raw materials according to plasma technology,” Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 57(1), 73 – 77 (2014)].

  31. N. K. Skripnikova, V. I. Otmakhov, and O. G. Volokitin, “Processes occurring during plasma-chemical synthesis of refractory silicate materials,” Glass Ceram., 67(1 – 2), 19 – 21 (2010) [Steklo Keram., No. 1, 19 – 21 (2010)].

  32. O. G. Volokitin, N. K. Skripnikova, G. G. Volokitin, et al., “Mineral fiber, obtained in low-temperature plasma assemblies, from the products of burning coal and oil shale,” Stroit. Mater., No. 11, 44 – 47 (2013).

  33. G. G. Volokitin, N. K. Skripnikova, O. G. Volokitin, and S. Volland, “Technology for producing mineral fibers by recycling ash-sludge and oil-shale wastes,” Glass Ceram., 68(7 – 8), 239 – 241 (2011) [Steklo Keram., No. 8, 3 – 5 (2011)].

  34. G. N. Atroshchenko, V. I. Savinkov, A. Paleari, et al., “Glassy microspheres with elevated yttrium oxide content for nuclear medicine,” Glass Ceram., 69(1 – 2), 39 – 43 (2012) [Steklo Keram., No. 2, 3 – 7 (2012)].

  35. V. N. Sigaev, G. N. Atroschenko, V. I. Savinkov, et al., “Structural rearrangement at the yttrium-depleted surface of HCl-processed yttrium aluminosilicate glass for 90Y-microsphere brachytherapy,” Mater. Chem. Phys., 133(1), 24 – 28 (2012).

    Article  CAS  Google Scholar 

  36. V. N. Sigaev, G. N. Atroshchenko, V. I. Savinkov, and P. D. Sarkisov, “A method of obtaining microspheres from yttrium-aluminosilicate glass for radiotherapy, Pat. No. 2505492 RF, IPC C03B19_10,” Byull. Izobr. Polezn. Modeli, No. 3 (2014); appl. 06_14_2012; publ. 01_27_2014.

  37. V. V. Budov and L. S. Egorova, “Glass microbeads, application, properties, and technology (Review),” Glass Ceram., 50(7), 275 – 279 (1993) [Steklo Keram., No. 7, 2 – 5 (1993)].

  38. V. K. Krylov, B. G. Bubnova, S. I. Vozny, and V. V. Rabenau, “Reasons for contamination of a marking made with thermoplastic materials,” Stroit. Mater., No. 2, 34 – 35 (2010).

  39. D. O. Bondarenko, V. V. Strokova, T. I. Timoshenko, and I. V. Rozdolskaya, “Plasma-chemical modification of facing composite material based on hollow glass microspheres with protective decorative coating,” Perspekt. Mater., No. 8, 72 – 80 (2018).

  40. D. O. Bondarenko, V. S. Bessmertnyi, V. V. Strokova, and N. I. Bondarenko, Vest. BGTU im. V. G. Shukhova, No. 7, 65 – 70 (2018).

  41. V. I. Blagov, V. I. Ekaterinchuk, and A. V. Benzen-Spiridonov, “Equipment for the production of glass microspheres,” Glass Ceram., 44(3), 100 – 102 (1987) [Steklo Keram., No. 3, 15 – 16 (1987).

  42. A. V. Kosyakov, S. V. Nikulin, V. V. Budov, et al., “Glass microsphere, Pat. No. 2672890 RF, SPK C03B 19/10,” Byull. Izobr. Polezn. Modeli, No. 32 (2018); appl. 01/14/2018; publ. 11/20/2018.

  43. V. P. Krokhin, V. S. Bessmertnyi, O. V. Puchka, and V. M. Nikiforov, “Synthesis of yttrium-aluminum glasses and minerals,” Glass Ceram., 54(9), 271 – 272 (1997) [Steklo Keram., No. 9, 6 – 7 (1997)].

  44. V. S. Bessmertnyi, V. P. Krokhin, A. A. Lyashko, et al., “Production of Glass Microspheres Using the Plasma Spraying Method,” Glass Ceram., 58, No. 7–8, 268–269 (2001).

    Article  CAS  Google Scholar 

  45. S. Rakotoarizon (Fr.), “Silica microspheres, manufacturing method, compounds and possible applications of silica microspheres, Pat. No. 2401811 RF MPK C03B19_10,” Byull. Izobr. Polezn. Modeli, No. 29 (2006); appl. 09_19_2005; publ. 03_23_2006.

  46. V. S. Bessmertnyi, P. S. Dyumina, and L. M. Dikunova, Decorating Glass and Glass Products Using Alternative Energy Sources [in Russian], Kooperativnoe Obrazovanie, Belgorod (2004).

    Google Scholar 

  47. V. S. Bessmertnyi, V. S. Lesovik, N. I. Bondarenko, et al., “Innovative glazing technology for concrete products,” Usp. Sovr. Estestvozn., No. 2, 107 – 108 (2013).

  48. V. S. Bessmertnyi, V. P. Krokhin, V. A. Panasenko, et al., “Plasma- rod method of decorating high-quality wares,” Glass Ceram., 58(5 – 6), 214 – 215 (2001) [Steklo Keram., No. 6, 21 – 22 (2001)].

  49. F. B. Vurzel’ and V. F. Nazarov, “Plasma-chemical modification of a glass surface,” in: Plazmokhemicheskie Protsessy [in Russian], Nauka, Moscow (1979), pp. 172 – 203.

  50. L. M. Demidenko, High-Refractory Composite Coatings [in Russian], Metallurgiya, Moscow (1979).

    Google Scholar 

  51. V. S. Bessmertnyi, O. V. Puchka, S. A. Kemenov, et al., “Plasma-chemical modification of wall building materials with cullet and tailings of ferruginous quartzite of the KMA,” Vest. Belgorod. Gos. Tekhnol. Univ. im. V. G. Shukhova, No. 5, 21 – 24 (2014).

  52. V. S. Bessmertni, A. A. Lyashko, I. A. Antropova, et al., “Investigation of the properties of glass beads that have undergone plasma treatment,” Mezhd. Zh. Prikl. Fundam. Issled., No. 12, 102 – 104 (2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Bessmertnyi.

Additional information

Translated from Steklo i Keramika, No. 7, pp. 17 – 27, July, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bessmertnyi, V.S., Zdorenko, N.M., Makarov, A.V. et al. Plasma Technology for Glass-Microspheres Production Based on Ferruginous Quartzite Tailings of the KMA. Glass Ceram 78, 271–278 (2021). https://doi.org/10.1007/s10717-021-00394-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-021-00394-w

Key words

Navigation