Skip to main content
Log in

Infrared Luminescent Hybrid Materials Based on Inorganic Glass Matrices

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

Organo-inorganic hybrid materials based on inorganic oxyfluoride lead-borosilicate glass matrices and the metal-complex compound tris-(8-oxycholate) ytterbium (III) were obtained by the melt method. The spectral-luminescence properties of tris-(8-oxycholate) ytterbium and hybrid materials in the visible and IR ranges were studied under different excitations (377 and 785 nm). It is shown that the intensity of IR luminescence in the initial metal-complex luminophore surpasses the luminescence in the visible range and vice versa in the obtained hybrid materials — the intensity of visible luminescence significantly surpasses the IR-luminescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. U. Schubert, “Cluster-based inorganic-organic hybrid materials,” Chem. Soc. Rev., 40, 575 – 582 (2011).

    Article  CAS  Google Scholar 

  2. B. Lebeau and P. Innocenzi, “Hybrid materials for optics and photonics,” Chem. Soc. Rev., 40, 886 – 906 (2011).

    Article  CAS  Google Scholar 

  3. S. Parola, B. Julián-López, L. D. Carlos, and C. Carlos, “Optical properties of hybrid organic-inorganic materials and their applications,” Adv. Funct. Mater., 26, 6506 – 6544 (2016).

    Article  CAS  Google Scholar 

  4. W. Liu, W. P. Lustig, and J. Lib, “Luminescent inorganic-organic hybrid semiconductor materials for energy-saving lighting applications,” Energy Chem., 1(2), 100008 (2019).

    Article  Google Scholar 

  5. B. Escribano, B. Julián-López, J. Planelles-Aragó, E. Cordoncillo, et al., “Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic-inorganic materials,” J. Mater. Chem., 18, 23 – 40 (2008).

    Article  CAS  Google Scholar 

  6. E. Cordoncillo, P. Escribano, F. J. Guaita, et al., “Optical properties of lanthanide doped hybrid organicinorganic materials,” J. Sol-Gel Sci. Technol., 24, 155 – 165 (2002).

    Article  CAS  Google Scholar 

  7. W. Que and X. Hu, “Optical switch and luminescence properties of sol-gel hybrid organic-inorganic materials containing azobenzene groups and doped with neodymium ions,” Appl. Phys. B, 88, 557 – 561 (2007).

    Article  CAS  Google Scholar 

  8. K. I. Runina, M. N. Mayakova, I. V. Taydakov, et al., “Luminescent hybrid materials based on metal-organic phosphors in PbF2 powder and PbF2 -containing glass matrix,” Opt. Mater., 88, 378 – 384 (2019).

    Article  Google Scholar 

  9. O. Petrova, I. Taydakov, M. Anurova, et al., “New fluorescent hybrid materials based on Eu-complexes in oxyfluoride glass and glass-ceramic matrix,” Periodica Polytech.: Chem. Eng., 60(3), 152 – 156 (2016).

    Article  CAS  Google Scholar 

  10. I. V. Taidakov, A. N. Lobanov, L. S. Lepnev, and A. G. Vitukhnovskii, “Neodymium(III) tris(1,3-bis(1,3-dimethyl-1Hpyrazol-4-yl)propane-1,3- dionato)(1,10-phenanthroline): Synthesis and photophysical properties,” Russ. J. Coord. Chem., 40(1), 16 – 22 (2014) [Koord. Khim., 40(1), 20 – 26 (2014)].

  11. D. A. Metlina, M. T. Metlin, S. A. Ambrozevich, et al., “Bright NIR-luminescent Nd3+ complexes with pyrazolesubstituted 1,3-diketones demonstrated unusual spectral lines branching ratios,” Dyes and Pigments, 181, 108558 (2020).

    Article  CAS  Google Scholar 

  12. M. O. Anurova, K. I. Runina, A. V. Khomyakov, et al., “The effect of borate glass matrix on the luminescence properties of organic–inorganic hybrid materials,” Phys. Chem. Glasses: Europ. J. Glass Sci. Technol., Pt B, 60(4), 140 – 145 (2019).

    Google Scholar 

  13. Q. Zhang, X. Yang, R. Deng, et al., “Synthesis and near infrared luminescence properties of a series of lanthanide complexes with POSS modified ligands,” Molecules, 24(7), 1253 (2019).

    Article  Google Scholar 

  14. L. R. P. Kassab, L. C. Courrol, N. U.Wetter, et al., “Lead fluoroborate glass doped with ytterbium,” J. Alloys Compd., 344, 264 – 267 (2002).

    Article  CAS  Google Scholar 

  15. E. Najafi, M. M. Amini, E. Mohajerani, et al., “Fabrication of an organic light-emitting diode (OLED) from a two-dimensional lead (II) coordination polymer,” Inorg. Chim. Acta, 399, 119 – 125 (2013).

    Article  CAS  Google Scholar 

  16. Q. Mei, N. Du, and M. Lu, “Synthesis and characterization of high molecular weight metaloquinolate-containing polymers,” J. Appl. Polymer Sci., 99, 1945 – 1952 (2006).

    Article  CAS  Google Scholar 

  17. D. V. Bharathi, P. Arulmozhichelvan, and P. Murugakoothan, “Synthesis and characterization of Znq2 and Znq2 : CTAB particles for optical applications,” Bull. Mater. Sci., 40, 1049 – 1053 (2017).

    Article  Google Scholar 

Download references

Acknowledgement

This work was funded under grant 19-79-10003 by the Russian Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. B. Petrova.

Additional information

Translated from Steklo i Keramika, No. 6, pp. 3 – 7, June, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Runina, K.I., Popkova, L.V., Khomyakov, A.V. et al. Infrared Luminescent Hybrid Materials Based on Inorganic Glass Matrices. Glass Ceram 78, 215–218 (2021). https://doi.org/10.1007/s10717-021-00382-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-021-00382-0

Key words

Navigation