Skip to main content
Log in

Influence of Synthesis Conditions on Clinoptilolitic Zeolite Crystallization

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

A Correction to this article was published on 16 September 2021

This article has been updated

Clinoptilolitic zeolite based on the native zeolite of Nakhchivan was synthesized, and the influence of the conditions of synthesis for the crystallization process (temperature, concentration of the thermal solution and mineralizer) was studied. The starting material was zeolite tuff from the Nakhchivan Kyukyuchaiskoe deposit. The optimal conditions of synthesis afforded the production of clinoptilolite with 100% crystallinity. Other structural types of zeolites or their associations can be obtained by changing the optimal conditions of synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. M. Grce and K. Pavelic, “Antiviral properties of clinoptilolite,” Microporous Mesoporous Mater., 79(1 – 3), 165 – 169 (2005).

  2. C. Baerlocher, L. B. McCusker, and D. H. Olson, Atlas of Zeolite Framework Types, Elsevier, Amsterdam (2007).

    Google Scholar 

  3. N. Lihareva, L. Dimova, O. Petrov, and Y. Tzvetanova, “Investigation of Zn sorption by natural clinoptilolite and mordenite,” Bulgar. Chem. Commun., 3(41), 266 – 271 (2009).

    Google Scholar 

  4. V. Jha and S. Hayashi, “Modification on natural clinoptilolite zeolite for its NH4+ retention capacity,” J. Hazardous Mater., 169(1 – 3), 29 – 35 (2009).

  5. E. V. Klimova, “Zeolites as a means for purifying water from radionuclides (purification of drinking water),” Ekolog. Bezopas. APK, Ref. Zh., No. 2, 302 (2011).

  6. A. Zendelska, M. Golomeova, S. Jakupi, and K. Lisichkov, “Characterization and application of clinoptilolite for removal of heavy metal ions from water resources,” Geologica Macedonica, 32(1), 21 – 32 (2018).

    Google Scholar 

  7. R. V. Nekrasov, A. A. Zelenchenkova, M. G. Chabaev, and S. Tulunay, “Use of native clinoptilolite in horse feed,” Ukrainian J. Ecology, 7(4), 5 – 11 (2017).

    Article  Google Scholar 

  8. S. E. Bachman, M. L. Galyean, G. S. Smith, et al., “Early aspects of locoweed toxicosis and evaluation of a mineral supplement or clinoptilolite as dietary treatments,” J. Animal Sci., 70(10), 3125 – 3132 (1992).

    Article  CAS  Google Scholar 

  9. A. N. Uyumaz, L. S. Ozyegin, N. Buyukakyuz, et al., “Evaluation of tcp loaded clinoptilolite use as graft material on Rabbit Tibia,” Key Eng. Mater., 493 – 494, 175 – 180 (2011).

  10. H. Derakhshankhah, S. Jafari, S. Sarvari, et al., “Biomedical applications of zeolitic nanoparticles, with an emphasis on medical interventions,” Int. J. Nanomedicine, 15, 363 – 386 (2020).

    Article  CAS  Google Scholar 

  11. P. Ambrozova, J. Kynicky, T. Urubek, and V. Nguyen, “Synthesis and modification of clinoptilolite,” Molecules, 22, 1107 – 1119 (2017).

    Article  Google Scholar 

  12. J.-S. Yuan, L. Shi, and H.-R. Han, “Synthesis of clinoptilolite,” Chinese J. Inorg. Chem., 23(6), 994 – 998 (2007).

    CAS  Google Scholar 

  13. C. D. Williams, “Synthesis of pure clinoptilolite without the use of seed crystals,” Chem. Commun., No. 21, 2113 – 2114 (1997).

  14. S. Yang, A. Vlessidis, and N. Evmiridis, “Influence of gel composition and crystallization conditions on the conventional synthesis of zeolites,” Industr. Eng. Chem. Res., 36(5), 1622 – 1631 (1997).

    Article  CAS  Google Scholar 

  15. M. A. Camblor, A. Mifsud, and J. Pérez-Pariente, “Influence of the synthesis conditions on the crystallization of zeolite beta,” Zeolites, 11(8), 792 – 797 (1991).

    Article  CAS  Google Scholar 

  16. S. Srilai,W. Tanwongwal, K. Onpecth, et al., “Influence of crystallization time for synthesis of zeolite A and zeolite X from natural kaolin,” Key Eng. Mater., 824, 231 – 235 (2019).

    Article  Google Scholar 

  17. R. M. Mohamed, O. A. Fouad, A. A. Ismail, and I. A. Ibrahim, “Influence of crystallization times on the synthesis of nanosized ZSM-5,” Mater. Lett., 59(27), 3441 – 3444 (2005).

    Article  CAS  Google Scholar 

  18. D. E. Anderson, S. Balapangu, and K. T. Elvis, “Investigating the influence of temperature on the kaolinite-base synthesis of zeolite and urease immobilization for the potential fabrication of electrochemical urea biosensors,” Sensors (Basel), 17(8), 1831 – 1846 (2017).

  19. A. S. Barbosa, L. A. Lima, B. V. Sousa, et al., “Influence of crystallization time on structural and morphological characteristics the precursor of zeolite MCM-22,” Mater. Sci. Forum, 660 – 661, 567 – 572 (2010).

  20. S. L. Shima, R. Zainab, and T. Sugeng, “Effect of different templates on the synthesis of mesoporous sodalite,” J. Chemistry, 27, 613 – 618 (2015).

    Google Scholar 

  21. M. M. J. Treacy and J. B. Higgins, Collection of Simulated XRD Powder Patterns for Zeolites, Elsevier, New York (2001).

    Google Scholar 

  22. H. Bekkum, E. M. Flanigen, P. A. Jacobs, and J. C. Jansen, Introduction to Zeolite Science and Practice, Elsevier, New York (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Mamedova.

Additional information

Translated from Steklo i Keramika, No. 4, pp. 43 – 48, April, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamedova, G.A. Influence of Synthesis Conditions on Clinoptilolitic Zeolite Crystallization. Glass Ceram 78, 168–171 (2021). https://doi.org/10.1007/s10717-021-00370-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-021-00370-4

Key words

Navigation