Skip to main content
Log in

Pre-Ceramic Nanostructured Liznmn-Ferrite Powders: Synthesis, Structure, and Electromagnetic Properties

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

Nanocrystalline LiZnMn-ferrite powders were synthesized by solution combustion at various glycine-nitrate ratios (G/N = 0.2, 0.4, ..., 1.4). Elemental analysis showed that the composition of the obtained samples corresponds to the ferrite-spinel Li0.45Zn0.05Mn0.06Fe2.43O4. Scanning electron microscopy showed that the compositions possess a porous microstructure and a developed surface; x-ray phase analysis attests that the synthesized LiZnMnFe-spinel is single-phase and possesses a high degree of crystallinity (to 99%). It was shown that the magnetic and dielectric characteristics of the obtained samples systematically change depending on the redox ratio of the reaction mixture and reach maximum values at stoichiometric value G/N = 0.4 – 0.6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. M. Sugimoto, “The past, present, and future of ferrites,” J. Am. Ceram. Soc., 82(2), 269 – 280 (1999).

    Article  CAS  Google Scholar 

  2. U. Ozgur, Y. Alivov, and H. Morkos, “Microwave ferrites. Part 2: Passive components and electrical tuning,” J. Mater. Sci.: Mater. Electron., 20, 911 – 952 (2009).

    CAS  Google Scholar 

  3. T. V. Trofimova, S. V. Saikova, M. V. Panteleeva, et al., “Anionexchange synthesis of copper ferrite powders,” Steklo Keram., No. 2, 38 – 44 (2018); T. V. Trofimova, S. V. Saikova, M. V. Panteleeva, et al., “Anion-exchange synthesis of copper ferrite powders,” Glass Ceram., 75(1 – 2), 74 – 79 (2018).

  4. S. V. Dyachenko, M. A. Vaseshenkova, K. D. Martinson, et al., “Synthesis and properties of magnetic fluids based on magnetite particles,” Zh. Prikl. Khim., 89(5), 553 – 559 (2016).

    Google Scholar 

  5. A. O. Merkushkin and Zo E Mo, “UREE-ferrite based ceramic,” Steklo Keram., No. 10, 25 – 27 (2011); A. O. Merkushkin and Zo E Mo, “UREE-ferrite based ceramic,” Glass Ceram., 68(9 – 10), 337 – 339 (2011).

  6. K. D. Martinson, I. S. Kondrashkova, and V. I. Popkov, “Obtaining EuFeO3 nanocrystals by glycine nitrate combustion,” J. Appl. Chem., 90(8), 88 – 93 (2017).

    Google Scholar 

  7. I. S. Kondrashkova, K. D. Martinson, N. V. Zakharova, and V. I. Popkov, “Features of formation and photocatalytic activity of HoFeO3 nanocrystals obtained by heat-treatment of the products of glycine-nitrate combustion,” Zh. Obshchei Khim., 88, No. 12, 1943 – 1950 (2018).

    Article  Google Scholar 

  8. V. I. Popkov, V. P. Tolstoy, and V. G. Semenov, “Synthesis of phase-pure superparamagnetic nanoparticles of ZnFe2O4 via thermal decomposition of zinc-iron layered double hydroxy sulphate,” J. Alloys Compd., 813, 152179 (2020).

    Article  CAS  Google Scholar 

  9. D. H. K. Reddy and Y.-S. Yun, “Spinel ferrite magnetic adsorbents: alternative future materials for water purification?” Coord. Chem. Rev., 315, 90 – 111 (2016).

    Article  CAS  Google Scholar 

  10. K. D. Martinson, I. S. Kondrashkova, S. O. Omarov, et al., “Magnetically recoverable catalyst based on porous nanocrystalline HoFeO3 for the process of n-hexane conversion,” Adv. Powder Technol., No. 31, 402 – 408 (2020); URL: https://doi.org/10.1016/j.apt.2019.10.033.

    Article  CAS  Google Scholar 

  11. K. D. Martinson, S. S. Kozyritskaya, I. B. Panteleev, and V. I. Popkov, “Low coercivity ceramics based on LiZnMn ferrite synthesized via glycine-nitrate combustion,” Nanosystems: Phys., Chem., Mathem., 10(3), 313 – 317 (2019).

    CAS  Google Scholar 

  12. P. Naderi, S. M. Masoudpanah, and S. Alamolhoda, “Magnetic properties of Li0.5Fe2.5O4 nanoparticles synthesized by solution combustion method,” Appl. Phys. A, 123, 702 (2017).

    Article  Google Scholar 

  13. M. L. S. Teo, L. B. Kong, Z.W. Li, et al., “Development of magneto-dielectric materials based on Li-ferrite ceramics. I. Densification behavior and microstructure development,” J. Alloys Compd., 459, 557 – 566 (2008).

  14. C. Liu, Z. Lan, X. Jiang, et al., “Effects of sintering temperature and Bi2O3 content on microstructure and magnetic properties of LiZn ferrites,” J. Magn. Magn. Mater., 320, 1335 – 1339 (2008).

    Article  CAS  Google Scholar 

  15. R. Guo, Z. Yu, X. Jiang, et al., “Dispersion spectra of permeability and permittivity for LiZnMn ferrite doped with Bi2O3,” IEEE Trans. Magn., 49(7), 4295 – 4298 (2013).

    Article  CAS  Google Scholar 

  16. K. D. Martinson, I. B. Panteleev, A. P. Shevchik, and V. I. Popkov, “Effect of the Red/Ox ratio on the structure and magnetic behavior of Li0.5Fe2.5O4 nanocrystals synthesized by solution combustion approach,” Lett. Mater., 9(4), 475 – 479 (2019).

    Article  Google Scholar 

  17. A. T. Nguyen, T. D. Nguyen, V. O. Mittova, et al., “Phase composition and magnetic properties of Ni1–xCoxFe2O4 nanocrystals with spinel structure, synthesized by coprecipitation,” Nanosystems: Phys. Chem. Math., 8(3), 371 – 377 (2017).

    CAS  Google Scholar 

  18. M. Dasari, G. R. Gajula, D. H. Rao, et al., “Lithium ferrite: The study on magnetic behavior and complex permittivity characteristics,” Proc. Appl. Ceram., 11(1), 7 – 12 (2017).

    Article  CAS  Google Scholar 

  19. K. D. Martinson, I. A. Cherepkova, I. B. Panteleev, and V. I. Popkov, “Single-step solution-combustion synthesis of magnetically soft NiFe2O4 nanopowders with controllable parameters,” Int. J. Self-Propag. High-Temp. Synth., 28(4), 266 – 270 (2019).

    Article  CAS  Google Scholar 

  20. R. Guo, Z. Yu, Y. Yang, et al., “Effects of Bi2O3 on FMR and microwave dielectric properties of LiZnMn ferrite,” J. Alloys Compd., 589, 1 – 4 (2014).

    Article  CAS  Google Scholar 

  21. M. N. Smirnov, M. A. Kop’eva, E. N. Beresnev, et al., “Synthesis of Mg(Fe0.8Ga0.2)2O4 by burning gel using glycine and starch,” Zh. Neorg. Khim., 63(10), 1239 – 1243 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. D. Martinson.

Additional information

Translated from Steklo i Keramika, No. 6, pp. 16 – 23, June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinson, K.D., Ivanov, A.A., Panteleev, I.B. et al. Pre-Ceramic Nanostructured Liznmn-Ferrite Powders: Synthesis, Structure, and Electromagnetic Properties. Glass Ceram 77, 215–220 (2020). https://doi.org/10.1007/s10717-020-00274-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-020-00274-9

Key words

Navigation