Skip to main content
Log in

Effect of Copper (II) Oxide on the Microstructure and Phase Transformations of Bismuth Orthoniobate

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

The microstructure and phase transformations of copper atom doped ceramic BiNbO4 synthesized at 950 and 1100°C were studied. According to XPA the samples in compact, pressed form crystallize in the α-BiNbO4 structure irrespective of the synthesis temperature and in spite of the phase transformation α → β at 1040°C. The substances BiNb1–xO4–δxCuO (x ≤ 0.04) are graphite-colored composites with visually expressed grain microstructure. Thermograms of the samples show near 900°C an endo effect associated with the decomposition of the copper (II) oxide and thermal effects due to reconstructive phase transformations of the type α → γ → β in BiNbO4. It was determined that copper oxide impurity in bismuth orthoniobate ceramic acts as a heat sink, which increases the temperature of the phase transition α → γ on heating of compact samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. R. S. Roth and J. L. Waring, “Phase equilibrium relations in binary system bismuth sesquioxide-niobium pentoxide,” J. Res. Natl. Bur. Stand. (U.S.) (Phys. and Chem.), 66À, 451 – 458 (1962).

    Article  Google Scholar 

  2. E. T. Keve and A. C. Skapski, “The crystal structure of triclinic β-BiNbO4,” J. Sol. St. Chem., No. 8, 159 – 165 (1973).

  3. M. A. Subramanian and J. C. Calabrese, “Crystal structure of the low temperature form of Bismuth niobium oxide,” Mat. Res. Bull., 28, 523 – 529 (1993).

    Article  CAS  Google Scholar 

  4. B. Muktha, J. Darriet, G. Madras, et al., “Crystal structures and photocatalysis of the triclinic polymorphs of BiNbO4 and BiTaO4,” J. Sol. St. Chem., 179, 3919 – 3925 (2006).

    Article  CAS  Google Scholar 

  5. N. A. Zhuk, M. G. Krzhizhanovskaya, V. A. Belyy, et al., “High-temperature crystal chemistry of α-, β-, and γ-BiNbO4 polymorphs,” Inorgan. Chem., 58, 1518 – 1526 (2019).

    Article  CAS  Google Scholar 

  6. H. Kagata, T. Inoue, J. Kato, et al., “Low-fire bismuth-based dielectric ceramics for microwave use,” Jpn. J. Appl. Phys., 31, 3152 – 3155 (1992).

    Article  CAS  Google Scholar 

  7. S. S. Dunke and K. S. Suslick, “Photodegradation of BiNbO4 powder during photocatalytic reactions,” J. Phys. Chem. C, 113, 10341 – 10345 (2009).

    Article  Google Scholar 

  8. Y. Liu, C. Xu, D. He, et al., “Exploring the phase transition of BiNbO4: a high pressure x-ray diffraction study,” Sol. St. Comm., 265, 15 – 18 (2008).

    Article  Google Scholar 

  9. N. A. Zhuk, J. A. Busargina, V. A. Belyy, et al., “Phase transformations and thermal stability of Ni-doped BiNbO4 ceramics,” Thermochim. Acta, 673, 12 – 16 (2019).

    Article  CAS  Google Scholar 

  10. K. Sang and Y. Kyung, “Characteristics of tapped microstrip bandpass filter in BiNbO4 ceramics,” J. Mater. Sci.: Mater. Electron., No. 9, 351 – 356 (1998).

  11. Y. Yang, S. Ding, and X. Yao, “Study on the relationship between the defect and dielectric properties of ZnO doped BiNbO4 ceramic,” Ceram. Int., 30, 1335 – 1339 (2004).

    Article  CAS  Google Scholar 

  12. C. Yang, “Improvement of the dielectric properties of BiNbO4 ceramics by the addition of CuO ± V2O5 mixtures,” J. Mater. Sci. Lett., 18, 805 – 807 (1999).

    Article  CAS  Google Scholar 

  13. C. Huang, M. Weng, and G. Shan, “Effect of V2O5 and CuO additives on sintering behavior and microwave dielectric properties of BiNbO4 ceramics,” J. Mater. Sci. Lett., 35, 5443 – 5447 (2000).

    CAS  Google Scholar 

  14. C. Cheng, S. Lo, and C. Yang, “The effect of CuO on the sintering and properties of BiNbO4 microwave ceramics,” Ceram. Int., 26, 113 – 117 (2000).

    Article  CAS  Google Scholar 

  15. D. Zhou and H. Wang, “Microwave dielectric properties and co-firing of BiNbO4 ceramics with CuO substitution,” Mater. Chem. Phys., 104, 397 – 402 (2007).

    Article  CAS  Google Scholar 

  16. A. J. M. Sales and P. W. S. Oliveira, “Copper concentration effect in the dielectric properties of BiNbO4 for RF applications,” J. Alloys Compd., 542, 264 – 270 (2012).

    Article  CAS  Google Scholar 

  17. D. Zhou, H. Wang, and X. Yao, “Microwave dielectric properties and co-firing with copper of (Bi1–xCux)(Nb1–xWx)O4 ceramics,” Ceram. Int., 34, 929 – 932 (2008).

    Article  CAS  Google Scholar 

  18. L. G. Akselrud, Yu. N. Gryn, P. Yu. Zavalij, et al., “CSD universal program package for single crystal or powder structure data treatment,” in: Thes. Rep. XII Eur. Crystallogr. Meet. (1989), No. 3, p. 155.

  19. N. A. Zhuk, V. A. Belyy, V. P. Lutoev, et al., “Mn doped BiNbO4 ceramics: Thermal stability, phase transitions, magnetic properties, NEXAFS and ESR spectroscopy,” J. Alloys Compd., 778, 418 – 426 (2019).

    Article  CAS  Google Scholar 

  20. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides,” Acta Cryst. À, 32, 751 – 767 (1976).

    Article  Google Scholar 

  21. N. A. Zhuk, S. M. Shugurov, V. A. Belyy, et al., “Thermal stability of CaCu3Ti4O12: Simultaneous thermal analysis and high-temperature mass spectrometric study,” Ceram. Int., 44, 20841 – 20844 (2018).

    Article  CAS  Google Scholar 

  22. R. A. Lidin, V. A. Molochko, and L. L. Andreeva, Handbook of Inorganic Chemistry in Reactions [in Russian], Drofa, Moscow (2007).

    Google Scholar 

  23. N. A. Zhuk, V. P. Lutoev, V. A. Belyy, et al., “EPR and NEXAFS spectroscopy of BiNb1–xFexO4–δ ceramics,” Phys. B: Cond. Matt., 552, 142 – 146 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Zhuk.

Additional information

Translated from Steklo i Keramika, No. 5, pp. 14 – 19, May, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuk, N.A., Busargina, Y.A., Belyi, V.A. et al. Effect of Copper (II) Oxide on the Microstructure and Phase Transformations of Bismuth Orthoniobate. Glass Ceram 77, 173–177 (2020). https://doi.org/10.1007/s10717-020-00264-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-020-00264-x

Key words

Navigation