Skip to main content
Log in

Femtosecond Laser Modification of Antimony-Containing Lithium-Aluminum-Silicate Glass and Transparent Sitall Obtained from It

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

The particulars of the action of a femtosecond laser beam on antimony-containing lithium-aluminum-silicate glass and the close to zero CLTE sitall obtained from this glass by heat-treatment were studied in a wide temperature range. In both the non-thermal and thermal laser action regimes local refractive index reduction is demonstrated in the laser modified regions of the sitall, reaching 0.002 in the non-thermal regime. The main reason for refractive index reduction is, by all appearances, partial amorphization of the crystal phase of β-eucryptite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photonics, 2, 219 – 225 (2018).

    Article  Google Scholar 

  2. A. Marcinkevièius, S. Juodkazis, A. Watanabe, et al., “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett., 26, 277 – 279 (2001).

    Article  Google Scholar 

  3. S. Nolte, M. Will, A. Burghoff, and A. Tuennermann, “Femtosecond waveguide scribing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A, 77, 109 – 111 (2003).

    Article  CAS  Google Scholar 

  4. M. Beresna, M. Gecevièius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett., 98, 201101 (2011).

    Article  Google Scholar 

  5. T. T. Fernandez, M. Sakakura, S. M. Eaton, et al., “Bespoke photonic devices using ultrafast laser driven ion migration in glasses,” Prog. Mater. Sci., 94, 68 – 113 (2018).

    Article  CAS  Google Scholar 

  6. F. Sima, K. Sugioka, and R. M. Vazquez, “Three-dimensional femtosecond laser processing for lab-on-a-chip applications,” Nanophotonics, 7, 613 – 634 (2018).

    Article  CAS  Google Scholar 

  7. S. Richter, C. Miese, S. Döring, et al., “Laser induced nanogratings beyond fused silica – periodic nanostructures in borosilicate glasses and ULEtm,” Opt. Mater. Express, 3, 1161 – 1166 (2013).

    Article  Google Scholar 

  8. S. Richter, D.Möncke, F. Zimmermann, et al., “Ultrashort pulse induced modification in ULE – from nanograting formation to laser darkening,” Opt. Mater. Express, 5, 1834 – 1850 (2015).

    Article  CAS  Google Scholar 

  9. I. Efthimiopoulos, D. Palles, S. Richter, et al., “Femtosecond laser-induced transformations in ultra-low expansion glass: Microsctructure and local density variations by vibrational spectroscopy,” J. Appl. Phys., 123, 233105(1 – 16) (2018).

    Article  Google Scholar 

  10. V. R. Bhardwaj, E. Simova, P. B. Corkum, and D. M. Rayner, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys., 97, 083102(1 – 9) 2005).

    Article  Google Scholar 

  11. V. N. Sigaev, V. I. Savinkov, E. E. Stroganova, et al., “Glass formation and crystallization of lithium-aluminum-silicate glass: Effect of phosphorus, lithium, and barium oxides on the crystallization properties,” Steklo Keram., No. 10, 21 – 24 (2014); V. N. Sigaev, V. I. Savinkov, E. E. Stroganova, et al., “Glass formation and crystallization of lithium-aluminum-silicate glass: Effect of phosphorus, lithium, and barium oxides on the crystallization properties,” Glass Ceram., 71, 356 – 359 (2015).

  12. V. N. Sigaev, V. I. Savinkov, E. E. Stroganova, et al., “Glass formation and crystallization of lithium-aluminum-silicate glass: effect of the form of raw materials on the melting and crystallization properties,” Steklo Keram., No. 7, 3 – 7 (2014); V. N. Sigaev, V. I. Savinkov, E. E. Stroganova, et al., “Glass formation and crystallization of lithium-aluminum-silicate glass: effect of the form of raw materials on the melting and crystallization properties,” Glass Ceram., 71, 225 – 228 (2014).

  13. E. I. Grishina, V. I. Sigaev, E. E. Stroganova, et al., “Crystallization of lithium-aluminum-silicate glasses with antimony oxide as an additive,” Usp. Khim. Khim. Tekh., 28(8), 35 – 38 (2014).

    Google Scholar 

  14. V. N. Sigaev, V. I. Savinkov, E. E. Stroganova, and A. N. Ignatov, A method of Obtaining Optical Sitall, RF Patent No. 2569703 C03C 10/12 [in Russian], publ. April 27, 2009.

  15. S. M. Eaton, H. Zhang, P. R. Herman, et al., “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express, 13, 4708 – 4716 (2018).

    Article  Google Scholar 

  16. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett., 30, 2248 – 2250 (2005).

    Article  CAS  Google Scholar 

  17. M. Kang, L. Sisken, J. Cook, et al., “Refractive index patterning of infrared glass ceramics through laser-induced vitrification,” Opt. Mat. Express, 8(9), 2722 – 2733 (2018).

    Article  CAS  Google Scholar 

Download references

This work was supported by the Russian Science Foundation (grant 19-19-00613).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Sigaev.

Additional information

Translated from Steklo i Keramika, No. 10, pp. 9 – 13, October, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sigaev, V.N., Lipat’ev, A.S., Fedotov, S.S. et al. Femtosecond Laser Modification of Antimony-Containing Lithium-Aluminum-Silicate Glass and Transparent Sitall Obtained from It. Glass Ceram 76, 370–373 (2020). https://doi.org/10.1007/s10717-020-00203-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-020-00203-w

Key words

Navigation