Advertisement

Glass and Ceramics

, Volume 76, Issue 3–4, pp 155–159 | Cite as

Investigation of the Influence of Paraffin Production Wastes on the Properties of Ceramic Articles

  • J. PranckevicieneEmail author
  • I. Pundiene
  • V. R. Balkevicius
  • G. Balciunas
WASTES INTO PRODUCTION
  • 17 Downloads

The possibility of using paraffin production wastes (PPW; 2.5 – 10 wt.%) in the production of porous ceramic was investigated. The addition of 2.5% PPW increases the strength of the ceramic in compression. Increasing PPW to 10% significantly increases the apparent porosity of the ceramic.

Key words

paraffin production waste diatomaceous earth ceramic porosity strength in compression 

References

  1. 1.
    L. Wanga, Y. Jin, Y. Nieb, and R. Li, “Recycling of municipal solid waste incineration fly ash for ordinary Portland cement production: A real-scale test resources,” Resources, Conservation and Recycling, 54(12), 1428 – 1435 (2010).CrossRefGoogle Scholar
  2. 2.
    Y. Song, B. Li, E. H. Yang, et al., “Feasibility study on utilization of municipal solid waste incineration bottom ash as aerating agent for the production of autoclaved aerated concrete,” Cement and Concrete Composites, 56, 51 – 58 (2015).CrossRefGoogle Scholar
  3. 3.
    J. Yang, B. Xiao, and A. R. Boccaccini, “Preparation of low melting temperature glass-ceramics from municipal waste incineration fly ash,” Fuel, 88(7), 1275 – 1280 (2009).CrossRefGoogle Scholar
  4. 4.
    V. Mymrin, W. Klitzke, K. Alekseev, et al., “Red clay application in the utilization of paper production sludge and scrap glass to fabricate ceramic materials,” Appl. Clay Sci., 107, 28 – 35 (2015).CrossRefGoogle Scholar
  5. 5.
    R. Stonys, D. Kuznetsov, A. Krasnikovs, et al., “Reuse of ultrafine mineral wool production waste in the manufacture of refractory concrete,” J. Envir. Management, 176, 149 – 156 (2016).CrossRefGoogle Scholar
  6. 6.
    V. G. Karayannis, “Development of extruded and fired bricks with steel industry byproduct towards circular economy,” J. Building Eng., 7, 382 – 387 (2016).CrossRefGoogle Scholar
  7. 7.
    S. M. S. Kazmia, S. Abbas, M. J. Munira, and A. Khitab, “Exploratory study on the effect of waste rice husk and sugarcane bagasse ashes in burnt clay bricks,” J. Building Eng., 7, 372 – 378 (2016).CrossRefGoogle Scholar
  8. 8.
    Y. Taha, M. Benzaazoua, R. Hakkou, and M. Mansori, “Natural clay substitution by calamine processing wastes to manufacture fired bricks,” J. Cleaner Product., 135, 847 – 858 (2016).CrossRefGoogle Scholar
  9. 9.
    H. Li, D. Liuliu, Z. Jiang, et al., “Study on utilization of red brick waste powder in the production of cement-based red decorative plaster for walls,” J. Cleaner Product., 133, 1017 – 1026 (2016).CrossRefGoogle Scholar
  10. 10.
    P. Muñoz, M. P. Morales, G. V. Letelier, et al., “Fired clay bricks made by adding wastes: Assessment of the impact on physical, mechanical and thermal properties,” Constr. Building Mater., 125, 241 – 252 (2016).CrossRefGoogle Scholar
  11. 11.
    C. Coletti, L. Maritan, G. Cultrone, and C. Mazzoli, “Use of industrial ceramic Ssludge in brick production: Effect on aesthetic quality and physical properties,” Constr. Building Mater., 124, 219 – 227 (2016).CrossRefGoogle Scholar
  12. 12.
    A. M. M. Soltan, K. Pöhler, F. Fuchs, et al., “Clay-bricks from recycled rock tailings,” Ceram. Int., 42(15), 16685 – 16696 (2016).CrossRefGoogle Scholar
  13. 13.
    E. Bernardo, E. Bonomo, and A. Dattoli, “Optimisation of sintered glass–ceramics from an industrial waste glass,” Ceram. Int., 36(5), 1675 – 1680 (2010).CrossRefGoogle Scholar
  14. 14.
    M. Erol, S. Kucukbayrak, and A. Ersoy-Mericboyu, “The influence of the binder on the properties of sintered glass-ceramics produced from industrial wastes,” Ceram. Int., 35(7), 2609 – 2617 (2009).CrossRefGoogle Scholar
  15. 15.
    S. N. Monteiro, J. Alexandre, J. I. Margem, et al., “Incorporation of sludge waste from water treatment plant into red ceramic,” Constr. Building Mater., 22(6), 1281 – 1287 (2008).CrossRefGoogle Scholar
  16. 16.
    V. Ducman and T. Kopar, “The influence of different waste additions to clay-product mixtures,” Mater. Technol., 41(6), 289 – 293 (2007).Google Scholar
  17. 17.
    Y. N. El-Shimy, Sh. K. Amin, S. A. El-Sherbiny, and M. F. Abadir, “The use of cullet in the manufacture of vitrified clay pipes,” Constr. Building Mater., 73, 452 – 457 (2014).CrossRefGoogle Scholar
  18. 18.
    L. Pérez-Villarejo, F. A. Corpas-Iglesias, S. Martínez-Martínez, et al., “Manufacturing new ceramic materials from clay and red mud derived from the aluminium industry,” Constr. Building Mater., 35, 656 – 665 (2012).CrossRefGoogle Scholar
  19. 19.
    O. Kizinieviè, V. Balkevièius, J. Pranckevièiené, and V. Kizinieviè, “Investigation of the usage of centrifuging waste of mineral wool melt (CMWW), contaminated with phenol and formaldehyde, in manufacturing of ceramic products,”Waste Management, 34(8), 1488 – 1494 (2014).CrossRefGoogle Scholar
  20. 20.
    N. V. Boltakova, G. R. Faseeva, R. R. Kabirov, et al., “Utilization of inorganic industrial wastes in producing construction ceramics. Review of Russian experience for the years 2000 – 2015,” Waste Management, 60, 230 – 246 (2017).CrossRefGoogle Scholar
  21. 21.
    M. Sutcu, S. Ozturk, E. Yalamac, and O. Gencel, “Effect of olive mill waste addition on the properties of porous fired clay bricks using Taguchi method,” J. Envir. Management, 181, 185 – 192 (2016).CrossRefGoogle Scholar
  22. 22.
    M. Sutcu and S. Akkurt, “Utilization of recycled paper processing residues and clay of different sources for the production of porous anorthite ceramics,” J. Europ. Ceram. Soc., 30(8), 1785 – 1793 (2010).CrossRefGoogle Scholar
  23. 23.
    D. Eliche-Quesada, M. A. Felipe-Seséa, J. A. López-Péreza, and A. Infantes-Molinac, “Characterization and evaluation of rice husk ash and wood ash in sustainable clay matrix bricks,” Ceram. Int., 43(1), 463 – 475 (2017).CrossRefGoogle Scholar
  24. 24.
    F. Akhtar, Y. Rehman, and L. Bergström, “A study of the sintering of diatomaceous earth to produce porous ceramic monoliths with bimodal porosity and high strength,” Powder Technol., 201(3), 253 – 257 (2010).CrossRefGoogle Scholar
  25. 25.
    K. Pimraksa and P. Chindaprasirt, “Lightweight bricks made of diatomaceous earth, lime and gypsum,” Ceram. Int., 35(1), 471 – 478 (2009).CrossRefGoogle Scholar
  26. 26.
    E. Escalera, G. Garcia, R. Terán, et al., “The production of porous brick material from diatomaceous earth and Brazil nut shell ash,” Constr. Building Mater., 98, 257 – 264 (2015).CrossRefGoogle Scholar
  27. 27.
    R. Maèiulaitis and J. Malaiðkiené, “New quality regulation system for manufacture of ceramic products,” Constr. Building Mater., 21(2), 258 – 268 (2007).CrossRefGoogle Scholar
  28. 28.
    R. J. Galán-Arboledas, M. T. Cotes-Palomino, S. Bueno, and C. Martínez-García, “Evaluation of spent diatomite incorporation in clay based materials for lightweight bricks processing,” Constr. Building Mater., 144, 327 – 337 (2017).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • J. Pranckeviciene
    • 1
    Email author
  • I. Pundiene
    • 1
  • V. R. Balkevicius
    • 1
  • G. Balciunas
    • 1
  1. 1.Institute of Building Materials, Faculty of Civil EngineeringGediminas Vilnius Technical University (VGTU)VilniusLithuania

Personalised recommendations