Advertisement

Glass and Ceramics

, Volume 74, Issue 11–12, pp 385–388 | Cite as

Controlling the Optical Characteristics of Laser-Induced Microstructures in Zinc Phosphate Glass Containing Silver

  • A. S. Lipat’ev
  • M. P. Vetchinnikov
  • G. Yu. Shakhgil’dyan
  • S. V. Lotarev
  • A. M. Vasetskii
  • V. N. Sigaev
SCIENCE FOR GLASS PRODUCTION

A focused femtosecond laser beam was used to produce luminescent and birefringent microregions in zinc phosphate glasses containing silver. It was shown that the optical characteristics of the microregions can be controlled by varying the repetition frequency and number of laser pulses. The obtained results are of interest for developing a theoretical model of the processes involved in the formation of nanoclusters and nanoparticles of silver in oxide glass and for developing a multi-level optical memory based on zinc phosphate glass.

Key words

zinc phosphate glass silver nanoparticles nanoclusters of silver femtosecond laser laser modification luminescence birefringence 

Notes

The work on the synthesis and laser modification of the structure of glass was supported by the President of the Russian Federation Grants Council (grant MK-9290.2016.3) and the RFFI (grants Nos. 16-33-60081 and 16-03-00541). The investigations of the modified regions of glass performed with the aid of luminescence microscopy were supported by the Ministry of Education and Science of the Russian Federation (Grant No. 14.Z50.31.0009).

References

  1. 1.
    U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer-Verlag, Berlin – Heidelberg (1995).CrossRefGoogle Scholar
  2. 2.
    A. Warth, J. Lange, H. Graener, et al., “Ultrafast dynamics of femtosecond laser-induced shape transformation of silver nanoparticles embedded in glass,” J. Phys. Chem., 115(47), 23,329 – 23,337 (2011).Google Scholar
  3. 3.
    S. Chervinskii, R. Drevinskas, D. V. Karpov, et al., “Revealing the nanoparticles aspect ratio in the glass-metal nanocomposites irradiated with femtosecond laser,” Sci. Reports, 5 (2015).Google Scholar
  4. 4.
    N. Marquestaut, Y. Petit, A. Royon, et al., “Three-dimensional silver nanoparticle formation using femtosecond laser irradiation in phosphate glasses: Analogy with photography,” Adv. Func. Mater., 24(37), 5824 – 5832 (2014).CrossRefGoogle Scholar
  5. 5.
    M. Bellec, L. Canioni, A. Royon, et al., “Optical data storage in photosensitive glasses and spin state transition compounds,” in: F. Balasa (ef.), Data Storage, InTech (2010); DOI: 10.5772/8874.Google Scholar
  6. 6.
    G. Papon, N. Marquestaut, Y. Petit, et al., “Femtosecond single-beam direct laser poling of stable and efficient second-order nonlinear optical properties in glass,” J. Appl. Phys., 115(11), 113103 (2014).CrossRefGoogle Scholar
  7. 7.
    A. S. Lipat’ev, G. Y. Shakhgil’dyan, T. O. Lipat’eva, et al., “Formation of luminescent and birefringent microregions in phosphate glass containing silver,” Steklo Keram., No. 8, 3 – 9 (2016); A. S. Lipat’ev, G. Y. Shakhgil’dyan, T. O. Lipat’eva, et al., “Formation of luminescent and birefringent microregions in phosphate glass containing silver,” Glass Ceram., 73(7 – 8), 277 – 282 (2016).Google Scholar
  8. 8.
    G. Y. Shakhgil’dyan, A. S. Lipat’ev, M. P. Vetchinnikov, et al., “Femtosecond laser modification of zinc-phosphate glasses with high silver oxide content,” Steklo Keram., No. 11, 32 – 34 (2016); G. Y. Shakhgil’dyan, A. S. Lipat’ev,M. P. Vetchinnikov, et al., “Femtosecond laser modification of zinc-phosphate glasses with high silver oxide content,” Glass Ceram., 73(11 – 12), 420 – 422 (2017).Google Scholar
  9. 9.
    E. O. Smetanina, B. Chimier, Y. Petit, et al., “Laser writing of nonlinear optical properties in silver-doped phosphate glass,” Opt. Lett., 42(9), 1688 – 1691 (2017).CrossRefGoogle Scholar
  10. 10.
    G. Yu. Shakhgildyan, C. A. Lipat’ev, M. P. Vetchinnikov, et al., “Effect of silver content on the formation of the laser beam in the luminescent microregions zinc-phosphate glass,” Usp. Khim. Khimich. Tekhnol., 31(1), 40 – 42 (2017).Google Scholar
  11. 11.
    S. Murai, R. Hattori, K. Fujita, et al., “Optical birefringence in tellurite glass containing silver nanoparticles precipitated through thermal process,” Appl. Phys. Express, 2(10), 102001 (2009).CrossRefGoogle Scholar
  12. 12.
    P. G. Kazansky and M. Beresna, “Quill and nonreciprocal ultrafast laser writing,” in: Femtosecond Laser Micromachining, Springer, Berlin – Heidelberg (2012), pp. 127 – 151.Google Scholar
  13. 13.
    S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys., 98(1), 10 (2005).CrossRefGoogle Scholar
  14. 14.
    A. Stalmashonak, G. Seifert, and A. Abdolvand, “Ultra-short pulsed laser engineered metal-glass nanocomposites,” in: Springer Briefs in Physics, Springer, Berlin – Heidelberg (2013), pp. 59 – 67.Google Scholar
  15. 15.
    M. Bellec, A. Royon, B. Bousquet, et al., “Beat the diffraction limit in 3D direct laser writing in photosensitive glass,” Opt. Express, 17(12), 10304 – 10318 (2009).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. S. Lipat’ev
    • 1
  • M. P. Vetchinnikov
    • 1
  • G. Yu. Shakhgil’dyan
    • 1
  • S. V. Lotarev
    • 1
  • A. M. Vasetskii
    • 1
  • V. N. Sigaev
    • 1
  1. 1.D. I. Mendeleev Russian Chemical-Technological University (MCTU)MoscowRussia

Personalised recommendations