Advertisement

Glass and Ceramics

, Volume 74, Issue 11–12, pp 406–410 | Cite as

Particulars of Calcium Aluminate Formation During Mechanochemical Interaction in the System Ca(OH)2–Al–H2O

  • R. N. Rumyantsev
  • A. A. Il’in
  • M. A. Lapshin
  • A. P. Il’in
  • A. V. Volkova
  • V. A. Goryanskaya
Article
  • 24 Downloads

The particulars of mechanochemical interaction in the system Ca(OH)2–Al–H2O were studied by means of x-ray phase, x-ray structural, and simultaneous thermal analyses. It is shown that the combined mechanical activation of the initial components in the ratio of Ca(OH)2: Al = 1 : 2, 1 : 4, 1 : 12 and subsequent heat treatment at 1000°C leads to the formation of aluminates with the same molar ratio. Studies of the specific surface area and mechanical strength of the synthesized samples established that calcium hexaaluminate has the highest indices.

Key words

calcium aluminate mechanochemical synthesis calcium hydroxide aluminum water 

Notes

This work was supported by a President of the Russian Federation Grant for Young Scientists and Graduate Students performing promising scientific research and development work in the high-priority direction of modernizing the

Russian economy (2016 – 2018) No. SP-3477.2016.1 (research on systems with the ratio Ca(OH)2 : Al = 1 : 1 and 1 : 12) and partially supported by the Program of Government Tasks at the Ministry of Education and Science of the Russian Federation under contract No. 3.1371.2017_4.6 (research on systems with the ratio Ca(OH)2 : Al = 1 : 1 and 1 : 4). The resources of the Center for Collective Use of Scientific Equipment at IGKhTU were used in this research.

References

  1. 1.
    M. F. Zawrah, A. B. Shehata, E. A. Kishar, and R. N. Yamani, “Synthesis, hydration and sintering of calcium aluminate nanopowder for advanced applications,” Comptes Rendus Chimie, 14(6), 611 – 618 (2011).CrossRefGoogle Scholar
  2. 2.
    T. V. Belyaninova, L. A. Selyunina, and L. N. Mishenina, “Sol-gel synthesis of calcium aluminate using various polymerizing agents,” Vest. Tomsk. Gos. Univer., 6(4), 65 – 72 (2016).Google Scholar
  3. 3.
    P. Hewlett, Lea’s Chemistry of Cement and Concrete, Butterworth-Heinemann (2003).Google Scholar
  4. 4.
    M. A. Gulgun, O. O. Popoola, and W. M. Kriven, “Chemical synthesis and characterization of calcium aluminate powders,” J. Am. Ceram. Soc., 77(2), 531 – 539 (1994).CrossRefGoogle Scholar
  5. 5.
    A. A. Goktas and M. C.Weinberg, “Preparation and crystallization of sol–gel calcia–alumina compositions,” J. Am. Ceram. Soc., 74(5), 1066 – 1070 (1991).CrossRefGoogle Scholar
  6. 6.
    F. T. Wallenberger, N. E. Weston, and S. D. Brown, “Melt processed calcium aluminate fibers: structural and optical properties,” in: Proceedings of the Society of Photo-Optical Instrumentation Engineers, Vol. 1484, Growth and Characterization of Materials for Infrared Detectors, SPIE: The International Society for Optical Engineering, Bellingham, WA (1991), pp. 116 – 124.Google Scholar
  7. 7.
    Y. Tian, X. Pan, H. Yu, and G. Tu, “Formation mechanism of calcium aluminate compounds based on high-temperature solid-state reaction,” J. of Alloys Comp., 670, 96 – 104 (2016).CrossRefGoogle Scholar
  8. 8.
    A. Ranjbar and M. Rezaei, “Low temperature synthesis of nanocrystalline calcium aluminate compounds with surfactant assisted precipitation method,” Adv. Powder Technol., 25(1), 467 – 471 (2014).CrossRefGoogle Scholar
  9. 9.
    V. Mandiæ and S. Kurajica, “The influence of solvents on sol–gel derived calcium aluminate,” Mater. Sci. Semicond. Proc., 38, 306 – 313 (2015).CrossRefGoogle Scholar
  10. 10.
    V. G. Singh, T. K. Rao, and J. J. Zhu, “Preparation, luminescence and defect studies of Eu2+-activated strontium hexa-aluminate phosphor prepared via combustion method,” J. Solid State Chem., 179(8), 2589 – 2594 (2006).CrossRefGoogle Scholar
  11. 11.
    A. S. Vanetsev and Yu. D. Tret’yakov, “Microwave synthesis of individual and multicomponent oxides,” Usp. Khim., 76(5), 435 – 453 (2007).CrossRefGoogle Scholar
  12. 12.
    E. E. Kuznetsova, L. A. Selyunina, and L. N. Mishenina, “Sol-gel synthesis of barium aluminate using microwave radiation,” Vest. Tomsk. Gos. Univer., Khimiya, 3(1), 19 – 28 (2016).Google Scholar
  13. 13.
    M. A. Giilgun, O. O. Popoola, and W. M. Kriven, “Chemical synthesis and characterization of calcium aluminate powders,” J. Am. Ceram. Soc., 77(2), 531 – 539 (1994).CrossRefGoogle Scholar
  14. 14.
    A. A. Il’in, R. N. Rumyantsev, V. V. Veisgaim, and A. P. Il’in, “Mechanochemical oxidation of aluminum for the production of its oxides and hydroxides and hydrogen,” Zh. Prilad. Khim., 90(4), 542 – 548 (2016); A. A. Il’in, R. N. Rumyantsev, V. V. Veisgaim, and A. P. Il’in, “Mechanochemical oxidation of aluminum for production of its oxides, hydroxides and hydrogen,” Russian J. Phys. Chem. A, 90(4), 764 – 770 (2016).Google Scholar
  15. 15.
    A. A. Il’in, N. N. Smirnov, R. N. Rumyantsev, et al., “Mechanochemical synthesis of zinc oxides with the use of liquid and gaseous media,” Zh. Prikl. Khim., 87(10), 1410 – 1415 (2014); A. A. Il’in, N. N. Smirnov, R. N. Rumyantsev, et al., “Mechanochemical synthesis of zinc oxides with the use of liquid and gaseous media,” Russian J. Appl. Chem., 87(10), 1412 – 1416 (2014).Google Scholar
  16. 16.
    R. N. Rumyantsev, A. A. Il’in, K. O. Denisova, et al., “Calcium ferrite structure formation during mechanochemical interaction in the system FeC2O4 ∙ 2H2O–Ca(OH)2,” Steklo Keram., No. 10, 24 – 28 (2016); R. N. Rumyantsev, A. A. Il’in, K. O. Denisova, et al., “Calcium ferrite structure formation during mechanochemical interaction in the system FeC2O4 ∙ 2H2O–Ca(OH)2,” Glass Ceram., 73(9 – 10), 374 – 377 (2017).Google Scholar
  17. 17.
    R. N. Rumyantsev, A. A. Il’in, A. P. Il’in, and S. P. Pankratova, “Mechanochemical synthesis of iron oxide from iron scrap,” Izv. Vyssh. Uchebn. Zaved., Khim. Khimich. Tekhnol., 54(3), 50 – 53 (2011).Google Scholar
  18. 18.
    A. A. Il’in, R. N. Rumyantsev, A. P. Il’in, and N. N. Smirnov, “Low temperature oxidation of iron in the process of its mechanical activation,” Izv. Vyssh. Uchebn. Zaved., Khim. Khimich. Tekhnol., 54(1), 103 – 107 (2011).Google Scholar
  19. 19.
    A. V. Tanygin, N. A. Zabrodina, V. Yu. Prokof’ev, and N. E. Gordiena, “Sorbents based on aluminum and calcium compounds for purification of gases by removal of hydrogen chloride,” Izv. Vyssh. Uchebn. Zaved., Khim. Khimich. Tekhnol., 56(10), 84 – 88 (2013).Google Scholar
  20. 20.
    V. Yu. Prokof’ev, T. V. Sazanova, and A. P. Il’in, “x-ray diffraction study of combined dispersion of hydrargillite and calcium compounds,” Izv. Vyssh. Uchebn. Zaved., Khim. Khimich. Tekhnol., 44(3), 115 – 119 (2001).Google Scholar
  21. 21.
    V. Yu. Prokof’ev, A. P. Il’in, Yu. G. Shirokov, and V. I. Yagodkin, “Mechanochemical synthesis of calcium aluminates,” Izv. Vyssh. Uchebn. Zaved., Khim. Khimich. Tekhnol., 38(4 – 5), 28 – 32 (1995).Google Scholar
  22. 22.
    V. Yu. Prokof’ev, A. P. Il’in, and T. Sazanova, “Combined mechanical activation of hydrargillite and calcium compounds,” Neorg. Mater., 36(9), 1076 – 1081 (1995).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • R. N. Rumyantsev
    • 1
  • A. A. Il’in
    • 1
  • M. A. Lapshin
    • 1
  • A. P. Il’in
    • 1
  • A. V. Volkova
    • 1
  • V. A. Goryanskaya
    • 1
  1. 1.Ivanovo State University of Chemistry and Technology, Scientific Research Institute of the Thermodynamics and Kinetics of Chemical Processes (IGKhTU)IvanovoRussia

Personalised recommendations