Glass and Ceramics

, Volume 68, Issue 11–12, pp 366–368 | Cite as

Production of Ti3SiC2-based materials by SHS forced compaction of layered composite Ti–SiC

  • P. V. Istomin
  • A. V. Nadutkin
  • V. É. GrassEmail author

A new method of synthesizing ceramic composite materials based on Ti3SiC2 using non-powder reaction compositions of titanium and silicon carbide was developed. Aceramic composite with a Ti3SiC2–TiSi2 matrix reinforced with SiC particles was obtained by SHS forced compaction of a multilayer packet of regularly packed layers of titanium foil and polymer film filled with silicon carbide particles. The particulars of the phase composition and microstructure of the material obtained were investigated.

Key words

Ti3SiC2 self-propagating high-temperature synthesis SHS compaction 


The Russian Foundation for Fundamental Research provided the financial support for this work (Project No. 11-03-00529-a).


  1. 1.
    M. W. Barsoum and T. El-Raghy, “Synthesis and characterization of a remarkable ceramic: Ti3SiC2,” J. Am. Ceram. Soc., 79(7), 1953 – 1956 (1996).CrossRefGoogle Scholar
  2. 2.
    N. F. Gao, Y. Miyamoto, and D. Zhang, “Dense Ti3SiC2 prepared by reactive HIP,” J. Mater. Sci., 34(18), 4385 – 4392 (1999).CrossRefGoogle Scholar
  3. 3.
    Y. C. Zhou, Z. M. Sun, S. Q. Chen, and Y. Zhang, “In-situ hot pressing. Solid–liquid reaction synthesis of dense titanium silicon carbide bulk ceramics,” Mater. Res. Innov., No. 2, 142 – 146 (1998).Google Scholar
  4. 4.
    A. Feng, T. Orling, and Z. A. Munir, “Field-activated pressure-assisted combustion synthesis of polycrystalline Ti3SiC2,” J. Mater. Res., 14(3), 925 – 939 (1999).CrossRefGoogle Scholar
  5. 5.
    Y. L. Bai, X. D. He, C. C. Zhu, and X. K. Qian, “Preparation of ternary layered Ti3SiC2 ceramic by SHS/PHIP,” Key Eng. Mater., 368 – 372, 1851 – 1854 (2008).CrossRefGoogle Scholar
  6. 6.
    Y. Zou, Z. M. Sun, S. Tada, and H. Hashimoto, “Synthesis reactions for Ti3SiC2 through pulse discharge sintering TiH2 /Si/TiC powder mixture,” Mater. Res. Bull., 43(4), 968 – 975 (2008).CrossRefGoogle Scholar
  7. 7.
    S. Konoplyuk, T. Abe, T. Uchimoto, and T. Takagi, “Ti3SiC2 /TiC composites prepared by PDS,” J. Mater. Sci., 40(13), 3409 – 3413 (2005).CrossRefGoogle Scholar
  8. 8.
    T. Goto and T. Hirai, “Chemically vapor deposited Ti3SiC2,” Mater. Res. Bull., 22(9), 1195 – 1201 (1987).CrossRefGoogle Scholar
  9. 9.
    S. Jacques, H. Fakih, and J.-C. Viala, “Reactive chemical vapor deposition of Ti3SiC2 with and without pressure pulses: effect on the ternary carbide texture,” Thin Solid Films, 518(18), 5071 – 5077 (2010).CrossRefGoogle Scholar
  10. 10.
    W. Kraus and G. Nolze, “Powder cell — a program for the representation and manipulation of crystal structures and calculation of the x-ray powder patterns,” J. Appl. Cryst., 29(3), 301 – 303 (1996).CrossRefGoogle Scholar
  11. 11.
    D. P. Riley, E. H. Kisi, T. C. Hansen, and A. W. Hewat, “Selfpropagating high-temperature synthesis of Ti3SiC2 : I. Ultrahigh speed neutron diffraction study of the reaction mechanism,” J. Am. Ceram. Soc., 85(10), 2417 – 2424 (2002).CrossRefGoogle Scholar
  12. 12.
    J. M. Córdoba, M. J. Sayagués, M. D. Alcalá, and F. J. Gotor, “Synthesis of Ti3SiC2 powders: reaction mechanism,” J. Am. Ceram. Soc., 90(3), 825 – 830 (2007).CrossRefGoogle Scholar
  13. 13.
    Y. Du, B. Huang, H. Liu, Y. Liu, Z. Pan, and H. Xu, “Materials Science International Team (MSIT). C–Si–Ti (carbon – silicon – titanium),” in: Ternary Alloy Systems: Phase Diagrams, Crystallographic and Thermodynamic Data, V. IV/11A4: Light Metal Systems, Part 4, Springer, N.Y. (2006).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • P. V. Istomin
    • 1
  • A. V. Nadutkin
    • 1
  • V. É. Grass
    • 1
    Email author
  1. 1.Institute of Chemistry, Komi Scientific Center, Ural Branch of the Russian Academy of SciencesSyktyvkarRussia

Personalised recommendations