Skip to main content
Log in

Extended Bose–Einstein condensate dark matter in f(Q) gravity

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this article, we attempt to explore the dark sector of the universe i.e. dark matter and dark energy, where the dark energy components are related to the modified f(Q) Lagrangian, particularly a power law function \(f(Q)= \gamma \left( \frac{Q}{Q_0}\right) ^n\), while the dark matter component is described by the Extended Bose–Einstein Condensate (EBEC) equation of state for dark matter, specifically, \(p = \alpha \rho + \beta \rho ^2\). We find the corresponding Friedmann-like equations and the continuity equation for both dark components along with an interacting term, specifically \(\mathcal {Q} = 3b^2H \rho \), which signifies the energy exchange between the dark sector of the universe. Further, we derive the analytical expression of the Hubble function, and then we find the best-fit values of free parameters utilizing the Bayesian analysis to estimate the posterior probability and the Markov Chain Monte Carlo (MCMC) sampling technique corresponding to CC+Pantheon+SH0ES samples. In addition, to examine the robustness of our MCMC analysis, we perform a statistical assessment using the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). Further from the evolutionary profile of the deceleration parameter and the energy density, we obtain a transition from the decelerated epoch to the accelerated expansion phase, with the present deceleration parameter value as \(q(z=0)=q_0=-0.56^{+0.04}_{-0.03}\) (\(68 \%\) confidence limit), that is quite consistent with cosmological observations. In addition, we find the expected positive behavior of the effective energy density. Finally, by examining the sound speed parameter, we find that the assumed theoretical f(Q) model is thermodynamically stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

There are no new data associated with this article.

References

  1. Kaiser, N., Squires, G.: Astrophys. J. 404, 441–450 (1993)

    ADS  Google Scholar 

  2. Massey, R., Kitching, T., Richard, J.: Rep. Prog. Phys. 73, 086901 (2010)

    ADS  Google Scholar 

  3. Seljak, U., Zaldarriaga, M.: Phys. Rev. Lett. 82, 2636 (1999)

    ADS  Google Scholar 

  4. Hamed, N.A., Finkbeiner, D.P., Slatyer, T.R., Weiner, N.: Phys. Rev. Lett. 79, 015014 (2009)

    Google Scholar 

  5. Mambrini, Y., Profumo, S., Queiroz, F.S.: Phys. Lett. B 760, 807–815 (2016)

    ADS  MathSciNet  Google Scholar 

  6. Hooper, D., Profumo, S.: Phys. Rep. 453, 29–115 (2007)

    ADS  Google Scholar 

  7. Marsh, D.J.E.: Phys. Rep. 643, 1–79 (2016)

    ADS  MathSciNet  Google Scholar 

  8. Oikonomou, V.K.: Phys. Rev. D 106, 044041 (2022)

    ADS  Google Scholar 

  9. Odintsov, S.D., Oikonomou, V.K.: Phys. Rev. D 99, 104070 (2019)

    ADS  MathSciNet  Google Scholar 

  10. Harko, T.: Phys. Rev. D 83, 123515 (2011)

    ADS  Google Scholar 

  11. Boehmer, C.G., Harko, T.: J. Cosmol. Astropart. Phys. 06, 025 (2007)

    ADS  Google Scholar 

  12. Bradley, C.C., Sackett, C.A., Tollett, J.J., Hulet, R.G.: Phys. Rev. Lett. 75, 1687 (1995)

    ADS  Google Scholar 

  13. Mahichi, E., Amani, A., Ramzanpour, M.A.: Mod. Phys. Lett. A 37, 2250228 (2022)

    ADS  Google Scholar 

  14. Das, S., Bhaduri, R.K.: Class. Quantum Gravit. 32, 105003 (2015)

    ADS  Google Scholar 

  15. Harko, T., Lobo, F.S.N.: Phys. Rev. D 92, 043011 (2015)

    ADS  Google Scholar 

  16. Mahichi, E., Amani, A., Ramzanpour, M.A.: Can. J. Phys. 99, 991–997 (2021)

    ADS  Google Scholar 

  17. Das, S., Sur, S.: Phys. Dark Univ. 42, 101331 (2023)

    Google Scholar 

  18. Mahichi, E., Amani, A.: Phys. Dark Univ. 39, 101167 (2023)

    Google Scholar 

  19. CANTATA collaboration, Modified Gravity and Cosmology: An Update by the CANTATA Network. arXiv:2105.12582

  20. Clifton, Timothy, et al.: Phys. Rep. 513, 1–189 (2012)

    ADS  MathSciNet  Google Scholar 

  21. Nester, J.M., Yo, H.-J.: Chin. J. Phys. 37, 113 (1999)

    Google Scholar 

  22. Jimenez, J.B., Heisenberg, L., Koivisto, T.: Phys. Rev. D 98, 044048 (2018)

    ADS  MathSciNet  Google Scholar 

  23. Hohmann, M., et al.: Phys. Rev. D 99, 024009 (2019)

    ADS  MathSciNet  Google Scholar 

  24. Ambrosio, F.D., et al.: Phys. Rev. D 105, 024042 (2022)

    ADS  Google Scholar 

  25. Jiménez, J.B., et al.: Phys. Rev. D 101, 103507 (2020)

    ADS  MathSciNet  Google Scholar 

  26. Jiménez, J.B., Heisenberg, L., Koivisto, T.S.: JCAP 08, 039 (2018)

    Google Scholar 

  27. Anagnostopoulos, F.K., Basilakos, S., Saridakis, E. N.: Phys. Lett. B. 822 (2021)

  28. D’Ambrosio, F., Heisenberg, L., Kuhn, S.: Class. Quantum Gravit. 39, 025013 (2022)

    ADS  Google Scholar 

  29. Capozziello, S., De Falco, V., Ferrara, C.: Eur. Phys. J. C 82, 865 (2022)

    ADS  Google Scholar 

  30. Zhao, D.: Eur. Phys. J. C 82, 303 (2022)

    ADS  Google Scholar 

  31. De, A., How, L.T.: Phys. Rev. D 106, 048501 (2022)

    ADS  Google Scholar 

  32. Frusciante, N.: Phys. Rev. D 103, 0444021 (2021)

    ADS  MathSciNet  Google Scholar 

  33. Khyllep, W., Paliathanasis, A., Dutta, J.: Phys. Rev. D 103, 103521 (2021)

    ADS  Google Scholar 

  34. Calza, M., Sebastiani, L.: Eur. Phys. J. C 83, 247 (2023)

    ADS  Google Scholar 

  35. Jiménez, J.B., Heisenberg, L., Koivisto, T.S.: Universe 5, 173 (2019)

    ADS  Google Scholar 

  36. Harko, T.: Phys. Rev. D 98, 084043 (2018)

    ADS  MathSciNet  Google Scholar 

  37. Lazkoz, R., Lobo, F.S.N., Banos, M.O., Salzano, V.: Phys. Rev. D 100, 104027 (2019)

    ADS  MathSciNet  Google Scholar 

  38. Madsen, J.: Phys. Rev. D 64, 027301 (2001)

    ADS  Google Scholar 

  39. Craciun, M., Harko, T.: Eur. Phys. J. C 80, 1–28 (2020)

    ADS  Google Scholar 

  40. Pethick, C.J., Smith, H.: Bose-Einstein condensation in dilute gases. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  41. Harko, T.: Mon. Not. R. Astron. Soc. 413, 3095–3104 (2011)

    ADS  Google Scholar 

  42. Harko, T., Lake, M.J.: Phys. Rev. D 91, 045012 (2015)

    ADS  Google Scholar 

  43. Shabani, H., De, A., Loo, T.-H.: Eur. Phys. J. C 83, 535 (2023)

    ADS  Google Scholar 

  44. Moresco, M.: Mon. Not. Roy. Astron. Soc. 463, L6–L10 (2016)

    Google Scholar 

  45. Solanki, R., et al.: Phys. Dark Univ. 32, 100820 (2021)

    Google Scholar 

  46. Kowalski, M., et al.: Astrophys. J. 686, 749–778 (2008)

    ADS  Google Scholar 

  47. Amanullah, R., et al.: Astrophys. J. 716, 712–738 (2010)

    ADS  Google Scholar 

  48. Suzuki, N., et al.: Astrophys. J. 746, 85 (2012)

    ADS  Google Scholar 

  49. Betoule, M., et al.: Astron. Astrophys. 568, A22 (2014)

    Google Scholar 

  50. Scolnic, D.M., et al.: Astrophys. J. 859, 101 (2018)

    ADS  Google Scholar 

  51. Scolnic, D.M., et al.: Astrophys. J. 938, 113 (2022)

    ADS  Google Scholar 

  52. Liddle, A.R.: Mon. Not. Roy. Astron. Soc. 377, L74 (2007)

    ADS  Google Scholar 

  53. Heisenberg, L.: arXiv, arXiv:2309.15958 (2023)

Download references

Acknowledgements

Aaqid Bhat expresses gratitude to the BITS-Pilani, Hyderabad campus, India, for granting him a Junior Research Fellowship. RS acknowledges UGC, New Delhi, India for providing Senior Research Fellowship with (UGC-Ref. No.: 191620096030). PKS acknowledges Science and Engineering Research Board, Department of Science and Technology, Government of India for financial support to carry out Research project No.: CRG/2022/001847 and IUCAA, Pune, India for providing support through the visiting Associateship program. We are very much grateful to the honorable referee and to the editor for the illuminating suggestions that have significantly improved our work in terms of research quality, and presentation.

Author information

Authors and Affiliations

Authors

Contributions

All authors have equal contributions.

Corresponding author

Correspondence to P. K. Sahoo.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, A., Solanki, R. & Sahoo, P.K. Extended Bose–Einstein condensate dark matter in f(Q) gravity. Gen Relativ Gravit 56, 63 (2024). https://doi.org/10.1007/s10714-024-03247-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-024-03247-3

Keywords

Navigation