Skip to main content
Log in

The generalized Vaidya spacetime with polytropic equation of state

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The process of the gravitational collapse might lead not only to a black hole but also to naked singularity formation. In this paper, we consider the generalized Vaidya spacetime with polytropic and generalized polytropic equations of state. We solve the Einstein and Einstein–Maxwell equations to obtain the explicit form of a mass function. We consider the limiting cases of solutions and find out, that generalized Vaidya spacetime might behave like Vaidya–de Sitter and Bonnor–Vaidya–de sitter solutions. Moreover, we explicitly show, that the part of solution, which depends on the polytropic index, is similar to cosmological fields surrounding both Vaidya and Bonnor–Vaidya black holes. The process of the gravitational collapse has been then considered. We have found out that the conditions of the naked singularity formation don’t depend on the polytropic index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

No datasets were generated or analysed during the current study.

Notes

  1. One should note that we can make this replacement only with the made assumption \(\gamma \ne 1\).

  2. One should note that there other possibilities of D(v) and the first two options of D(v) were chosen just to study the behavior of the mass function.

  3. Note, one can expand with respect to either \(\delta \) or \(\frac{D(v)}{2^{\gamma -1}\alpha r^{2-2\gamma }}\) and the result will be the same.

  4. Under notion ’eternal’ we mean that the singularity might form during the gravitational collapse and will never be covered with the apparent horizon.

References

  1. Abbott, B.P., et al.: (LIGO Scientific, Virgo), Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  2. Abbott, B.P., et al.: GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence. Phys. Rev. Lett. 119, 141101 (2017)

    Article  ADS  Google Scholar 

  3. The Event Horizon Telescope Collaboration, firstM87 Event Horizon Telescope results. I. The shadow of the supermassive black hole. Astrophys. J. Lett. 875, L1 (2019). arXiv:1906.11238 [gr-qc]

  4. The Event Horizon Telescope Collaboration, First M87 Event Horizon Telescope results. II. Array and instrumentation. Astrophys. J. Lett. 875, L2 (2019). arXiv:1906.11239

  5. Akiyama, K., et al.: First Sagittarius A\(*\) event horizon telescope results. I. The shadow of the supermassive black hole in the center of the milky way. Astrophys. J. Lett. 930, L12 (2022)

    Article  ADS  Google Scholar 

  6. Joshi, P.S.: Gravitational Collapse and Spacetime Singularities, p. 273. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  7. Joshi, P.S., Malafarina, D.: Recent development in gravitational collapse and spacetime singularities. Int. J. Mod. Phys. D 20, 2641 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  8. Harko, T.: Gravitational collapse of a Hagedorn fluid in Vaidya geometry. Phys. Rev. D 68, 064005 (2003)

    Article  ADS  Google Scholar 

  9. Goncalves, S.M.C.V., Jhingan, S.: Singularities in gravitational collapse with radial pressure. Gen. Relativ. Gravit. 33, 2125–2149 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  10. Mosani, K., Dey, D., Joshi, P.S.: Global visibility of a strong curvature singularity in non-marginally bound dust collapse. Phys. Rev. D 102(4), 044037 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  11. Dey, D., Mosani, K., Joshi, P., Vertogradov, V.: Causal structure of singularity in non-spherical gravitational collapse. Eur. Phys. J. C 82, 431 (2022)

    Article  ADS  Google Scholar 

  12. Naidu, N.F., Bogadi, R.S., Kaisavelu, A., Govender, M.: Stability and horizon formation during dissipative collapse. Gen. Relativ. Gravit. 52(8), 1–17 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  13. Shaikh, R., Kocherlakota, P., Narayan, R., Joshi, P.S.: Shadows of spherically symmetric black holes and naked singularities. MNRAS 482, 52 (2019)

    Article  ADS  Google Scholar 

  14. Patil, M., Joshi, P.S.: Kerr naked singularities as particle accelerators. Class. Quantum Grav. 28, 235012 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  15. Patil, M., Joshi, P.S.: Naked singularities as particle accelerators. Phys. Rev. D 82, 104049 (2010)

    Article  ADS  Google Scholar 

  16. Patil, M., Joshi, P.S., Malafarina, D.: Naked singularities as particle accelerators II. Phys. Rev. D 83, 064007 (2011)

    Article  ADS  Google Scholar 

  17. Oppenheimer, J.R., Snyder, H.: On continued gravitational contraction. Phys. Rev. 56, 455–459 (1939)

    Article  ADS  MathSciNet  Google Scholar 

  18. Singh, T.P., Joshi, P.S.: The final fate of spherical inhomogeneous dust collapse. Class. Quantum Gravity 13, 559–572 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  19. Jhingan, S., Joshi, P.S., Singh, T.P.: The final fate of spherical inhomogeneous dust collapse II: initial data and causal structure of singularity. Class. Quantum Gravity 13, 3057–3068 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  20. Vaidya, P.C.: Nonstatic solutions of Einstein’s field equations for spheres of fluids radiating energy. Phys. Rev. 83, 10 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  21. Papapetrou, A.: A Random Walk in Relativity and Cosmology. Wiley Eastern, New Delhi (1985)

    Google Scholar 

  22. Lindquist, R.W., Schwartz, R.A., Misner, C.W.: Vaidyas radiating schwarzschild metric. Phys. Rev. 137(5B), B1364 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  23. Santos, N.O.: Non-adiabatic radiating collapse. Mon. Not. R. Astron. Soc. 216, 403 (1985)

    Article  ADS  Google Scholar 

  24. Herrera, L., Prisco, A.D., Ospino, J.: Some analytical models of radiating collapsing spheres. Phys. Rev. D 74, 044001 (2006)

    Article  ADS  Google Scholar 

  25. Herrera, L., Denmat, G.L., Santos, N.O.: Dynamical instability and the expansion-free condition. Gen. Relativ. Gravit. 44, 1143 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  26. Dwivedi, I.H., Joshi, P.S.: On the nature of naked singularities in Vaidya spacetimes. Class. Quantum Gravity 6, 1599 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  27. Babichev, E., Dokuchaev, V., Eroshenko, Yu.: Backreaction of accreting matter onto a black hole in the Eddington–Finkelstein coordinates. Class. Quantum Gravity 29(11), 115002 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  28. Solanki, J., Perlick, V.: Photon sphere and shadow of a time-dependent black hole described by a Vaidya metric. Phys. Rev. D 105, 064056 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  29. Koga, Y., Asaka, N., Kimura, M., Okabayashi, K.: Dynamical photon sphere and time evolving shadow around black holes with temporal accretion. Phys. Rev. D 105, 104040 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  30. Heydarzade, Y., Vertogradov, V.: Dynamical photon spheres in charged black holes and naked singularities. arXiv:2311.08930 [gr-qc]

  31. Nielsen, A.B.: Revisiting Vaidya horizons. Galaxies 2, 62 (2014)

    Article  ADS  Google Scholar 

  32. Nielsen, A.B., Yoon, J.H.: Dynamical surface gravity. Class. Quantum Gravity 25, 085010 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  33. Vertogradov, V., Kudryavcev, D.: Generalized Vaidya spacetime: horizons, conformal symmetries, surface gravity and diagonalization. Mod. Phys. Lett. A 38, 2350119 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  34. Berezin, V.A., Dokuchaev, V.I., Eroshenko, Yu.N.: Vaidya spacetime in the diagonal coordinates. JETP 124, 446 (2017)

    Article  ADS  Google Scholar 

  35. Ibohal, N., Kapil, L.: Charged black holes in Vaidya backgrounds: Hawking’s radiation. Int. J. Mod. Phys. D 19, 437–464 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  36. Dahal, P.K.,Maharana, S., Simovic, F., Terno, D.R.: Black hole models II: Kerr–Vaidya solutions. [arXiv:2311.02981 [gr-qc]]

  37. Ghosh, S.G., Maharaj, S.D.: Radiating Kerr-like regular black hole. Eur. Phys. J. C 75, 7 (2015)

    Article  ADS  Google Scholar 

  38. Manna, Goutam, Majumdar, Parthasarathi, Majumder, Bivash: K-essence emergent spacetime as generalized Vaidya geometry. Phys. Rev. D 101, 124034 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  39. Manna, Goutam: Gravitational collapse for the K-essence emergent Vaidya spacetime. Eur. Phys. J. C 80, 813 (2020)

    Article  ADS  Google Scholar 

  40. Majumder, B., Ray, S., Manna, G.: Evaporation of dynamical horizon with the Hawking temperature in the K-essence emergent Vaidya spacetime. arXiv:2007.16053 [gr-qc]

  41. Ray, S., Panda, A., Majumder, B., Islam, M.R., Manna, G.: Collapsing scenario for the k-essence emergent generalized Vaidya spacetime in the context of massive gravity’s rainbow. Chin. Phys. C 46, 125103 (2023)

    Article  ADS  Google Scholar 

  42. Heydarzade, Y., Darabi, F.: Surrounded Vaidya black holes: apparent horizon properties. Eur. Phys. J. C 78, 342 (2018)

    Article  ADS  Google Scholar 

  43. Heydarzade, Y., Darabi, F.: Surrounded Vaidya solution by cosmological fields. Eur. Phys. J. C 78, 582 (2018)

    Article  ADS  Google Scholar 

  44. Heydarzade, Y., Darabi, F.: Surrounded Bonnor Vaidya solution by cosmological fields. Eur. Phys. J. C 78, 1004 (2018)

    Article  ADS  Google Scholar 

  45. Reddy, K.P., Govender, M., Maharaj, S.D.: Impact of anisotropic stresses during dissipative gravitational collapse. Gen. Relativ. Gravit. 47, 35 (2015)

    Article  ADS  Google Scholar 

  46. Thirukkanesh, S., Moopanar, S., Govender, M.: The final outcome of dissipative collapse in the presence of \(\Lambda \). Pramana J. Phys. 79, 223–232 (2012)

    Article  ADS  Google Scholar 

  47. Thirukkanesh, S., Govender, M.: The role of the electromagnetic field in dissipative collapse. Int. J. Mod. Phys. D 22, 1350087 (2013)

    Article  ADS  Google Scholar 

  48. Wang, A., Wu, Y.: Generalized Vaidya solutions. Gen Relativ. Gravit. 31, 107 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  49. Husain, V.: Exact solutions for null fluid collapse. Phys. Rev. D 53, R1759 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  50. Glass, E.N., Krisch, J.P.: Radiation and string atmosphere for relativistic stars. Phys. Rev. D 57, 5945 (1998)

    Article  ADS  Google Scholar 

  51. Glass, E.N., Krisch, J.P.: Two-fluid atmosphere for relativistic stars. Class. Quantum Gravity 16, 1175 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  52. Mkenyeleye, M.D., Goswami, R., Maharaj, S.D.: Gravitational collapse of generalised Vaidya spacetime. Phys. Rev. D 92, 024041 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  53. Mkenyeleye, M.D., Goswami, R., Maharaj, S.D.: Thermodynamics of gravity favours weak censorship conjecture. Phys. Rev. D 90, 064034 (2014)

    Article  ADS  Google Scholar 

  54. Vertogradov, V.: The eternal naked singularity formation in the case of gravitational collapse of generalized Vaidya spacetime. Int. J. Mod. Phys. A 33, 1850102 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  55. Vertogradov, V.: Naked singularity formation in generalized Vaidya space-time. Grav. Cosmol. 22, 220–223 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  56. Vertogradov, V.: Gravitational collapse of Vaidya spacetime. Int. J. Mod. Phys. Conf. Ser. 41, 1660124 (2016)

    Article  Google Scholar 

  57. Ray, S., Panda, A., Majumder, B., Islam, Md.R.: Collapsing scenario for the \(k\)-essence emergent generalised Vaidya spacetime in the context of massive gravity’s rainbow. Chin. Phys. C 46(12), 125103 (2022)

    Article  ADS  Google Scholar 

  58. Dey, D., Joshi, P.S.: Gravitational collapse of baryonic and dark matter. Arab. J. Math. 8, 269 (2019)

    Article  MathSciNet  Google Scholar 

  59. Ojako, S., Goswami, R., Maharaj, S.D., Narain, R.: Conformal symmetries in generalised Vaidya spacetimes. Class. Quantum Gravity 37, 055005 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  60. Koh, S., Park, M., Sherif, A.M.: Thermodynamics with conformal Killing vector in the charged Vaidya metric. arXiv:2309.17398 [gr-qc]

  61. Nikolaev, A.V., Maharaj, S.D.: Embedding with Vaidya geometry. Eur. Phys. J. C 80, 648 (2020)

    Article  ADS  Google Scholar 

  62. Faraoni, V., Giusti, A., Fahim, B.H.: Vaidya geometries and scalar fields with null gradients. Eur. Phys. J. C 81, 232 (2021)

    Article  ADS  Google Scholar 

  63. Brassel, B.P., Maharaj, S.D., Goswami, R.: Charged radiation collapse in Einstein Gauss Bonnet gravity. Eur. Phys. J. C 82, 359 (2022)

    Article  ADS  Google Scholar 

  64. Hayward, S.A.: Formation and evaporation of non-singular black holes. Phys. Rev. Lett. 96, 031103 (2006)

    Article  ADS  Google Scholar 

  65. Culetu, H.: A Vaidya-type spacetime with no singularities. Int. J. Mod. Phys. D 31(16), 2250124 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  66. Penrose, R., Floyd, R.M.: Extraction of rotational energy from a black hole. Nat. Phys. Sci. 229, 177 (1971)

    Article  ADS  Google Scholar 

  67. Vertogradov, V.: The negative energy problem in generalized Vaidya spacetime. Universe 6(9), 155 (2020)

    Article  ADS  Google Scholar 

  68. Ruffini, D.: On the energetics of Reissner Nordström geometries. Phys. Lett. 45B, 259 (1973)

    ADS  Google Scholar 

  69. Vertogradov, V.: Extraction energy from charged Vaidya black hole via Penrose process. Commun. Theor. Phys. 75, 045404 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  70. Vertogradov, V.: Forces in Schwarzschild, Vaidya and generalized Vaidya spacetimes. J. Phys. Conf. Ser. 2081, 012036 (2021)

    Article  Google Scholar 

  71. Vertogradov, V.D.: Non-linearity of Vaidya spacetime and forces in the central naked singularity. Phys. Complex Syst. 3(2) (2022). arXiv:2203.05270

  72. Vertogradov, V., Misyura, M.: Vaidya and generalized Vaidya solutions by gravitational decoupling. Universe 8(11), 567 (2022)

    Article  ADS  Google Scholar 

  73. Isayev, A.A.: Relativistic anisotropic stars with the polytropic equation of state in general relativity. J. Phys. Conf. Ser. 934, 012039 (2017)

    Article  Google Scholar 

  74. Malaver de la Fuente, M.: Classes of charged anisotropic stars with polytropic equation of state. Int. J. Res. Rev. Appl. Sci. 46(1), 38–51 (2021)

    MathSciNet  Google Scholar 

  75. Komathiraj, K., Maharaj, S.D.: Classes of exact Einstein–Maxwell solutions. Gen. Relativ. Gravit. 39(12), 2079–2093 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  76. Malaver, M.: Analytical model for charged polytropic stars with Van der Waals modified equation of state. Am. J. Astron. Astrophys. 1(4), 37–42 (2013)

    Article  Google Scholar 

  77. Mafa Takisa, P., Maharaj, S.D.: Some charged polytropic models. Gen. Relativ. Gravit 45, 1951–1969 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  78. Poisson, E.: A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  79. Vaidya, P.C., Shah, K.B.: A radiating mass particle in an expanding universe. Proc. Nat. Inst. Sci. (India) 23, 534 (1957)

    MathSciNet  Google Scholar 

  80. Wagh, S.M., Maharaj, S.D.: Naked singularity of the Vaidya–de Sitter spacetime and cosmic censorship conjecture. Gen. Relativ. Gravit. 31, 975–982 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  81. Caldwell, R.R.: A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Phys. Lett. B 545, 23–29 (2002)

    Article  ADS  Google Scholar 

  82. Ori, A.: Charged null fluid and the weak energy condition. Class. Quantum Gravity 8, 1559 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  83. Bonnor, W.B., Vaidya, P.C.: Spherically symmetric radiation of charge in Einstein–Maxwell theory. Gen. Relativ. Gravit. 1, 127 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  84. Lake, K., Zannias, T.: Structure of singularities in the spherical gravitational collapse of a charged null fluid. Phys. Rev. D 43, 1798 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  85. Chatterjee, S., Ganguli, S., Virmani, A.: Charged Vaidya solution satisfies weak energy condition. Gen. Relativ. Gravit. 48, 91 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  86. Beesham, A., Ghosh, S.G.: Naked singularities in the charged Vaidya DeSitter spacetime. Int. J. Mod. Phys. D 12, 801 (2003)

    Article  ADS  Google Scholar 

  87. Chavanis, P.-H.: Models of universe with a polytropic equation of state: I. The early universe. Eur. Phys. J. Plus 129, 38 (2014)

    Article  Google Scholar 

  88. Chakrabarti, S.K., Joshi, P.S.: Naked singularities as possible candidates for gamma-ray bursters. arXiv:hep-th/9208060

  89. Joshi, A.B., Mosani, K., Joshi, P.S.: Future-null singularity due to gravitational collapse. arXiv:2310.01222 [gr-qc]

Download references

Acknowledgements

The work was performed as part of the SAO RAS government contract approved by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Contributions

The whole idea and its realization have been done by Vertogradov.

Corresponding author

Correspondence to Vitalii Vertogradov.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vertogradov, V. The generalized Vaidya spacetime with polytropic equation of state. Gen Relativ Gravit 56, 59 (2024). https://doi.org/10.1007/s10714-024-03244-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-024-03244-6

Keywords

Navigation