Skip to main content
Log in

Novel regular black holes: geometry, source and shadow

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We propose a two-parameter, static and spherically symmetric regular geometry, which, for specific parameter values represents a regular black hole. The matter required to support such spacetimes within the framework of general relativity (GR), is found to violate the energy conditions, though not in the entire domain of the radial coordinate. A particular choice of the parameters reduces the regular black hole to a singular, mutated Reissner–Nordström geometry. It also turns out that our regular black hole is geodesically complete. Fortunately, despite energy condition violation, we are able to construct a viable source, within the framework of GR coupled to matter, for our regular geometry. The source term involves a nonlinear magnetic monopole in a chosen version of nonlinear electrodynamics. We also suggest an alternative approach towards constructing a source, using the effective Einstein equations which arise in the context of braneworld gravity. Finally, we obtain the circular shadow profile of our regular black hole and provide a preliminary estimate of the metric parameters using recent observational results from the EHT collaboration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abbott, B.P., et al.: Phys. Rev. Lett. 116, 061102 (2016). https://doi.org/10.1103/PhysRevLett.116.061102

    Article  ADS  MathSciNet  Google Scholar 

  2. Abbott, B.P., et al.: Phys. Rev. Lett. 116, 241103 (2016). https://doi.org/10.1103/PhysRevLett.116.241103

    Article  ADS  Google Scholar 

  3. Abbott, B.P., et al.: Phys. Rev. Lett. 118, 221101 (2017). https://doi.org/10.1103/PhysRevLett.118.221101

    Article  ADS  Google Scholar 

  4. Abbott, B.P., et al.: Phys. Rev. Lett. 119, 161101 (2017). https://doi.org/10.1103/PhysRevLett.119.161101

    Article  ADS  Google Scholar 

  5. Akiyama, K., et al.: Astrophys. J. Lett. 875, L1 (2019). https://doi.org/10.3847/2041-8213/ab0ec7

    Article  ADS  Google Scholar 

  6. Akiyama, K., et al.: Astrophys. J. Lett. 875, L2 (2019). https://doi.org/10.3847/2041-8213/ab0c96

    Article  ADS  Google Scholar 

  7. Akiyama, K., et al.: Astrophys. J. Lett. 875, L3 (2019). https://doi.org/10.3847/2041-8213/ab0c57

    Article  ADS  Google Scholar 

  8. Akiyama, K., et al.: Astrophys. J. Lett. 875, L4 (2019). https://doi.org/10.3847/2041-8213/ab0e85

    Article  ADS  Google Scholar 

  9. Akiyama, K., et al.: Astrophys. J. Lett. 875, L5 (2019). https://doi.org/10.3847/2041-8213/ab0f43

    Article  ADS  Google Scholar 

  10. Akiyama, K., et al.: Astrophys. J. Lett. 875, L6 (2019). https://doi.org/10.3847/2041-8213/ab1141

    Article  ADS  Google Scholar 

  11. Akiyama, K., et al.: Astrophys. J. Lett. 930, L12 (2022). https://doi.org/10.3847/2041-8213/ac6674

    Article  ADS  Google Scholar 

  12. Akiyama, K., et al.: Astrophys. J. Lett. 930, L13 (2022). https://doi.org/10.3847/2041-8213/ac6675

    Article  ADS  Google Scholar 

  13. Akiyama, K., et al.: Astrophys. J. Lett. 930, L14 (2022). https://doi.org/10.3847/2041-8213/ac6429

    Article  ADS  Google Scholar 

  14. Akiyama, K., et al.: Astrophys. J. Lett. 930, L15 (2022). https://doi.org/10.3847/2041-8213/ac6736

    Article  ADS  Google Scholar 

  15. Akiyama, K., et al.: Astrophys. J. Lett. 930, L16 (2022). https://doi.org/10.3847/2041-8213/ac6672

    Article  ADS  Google Scholar 

  16. Akiyama, K., et al.: Astrophys. J. Lett. 930, L17 (2022). https://doi.org/10.3847/2041-8213/ac6756

    Article  ADS  Google Scholar 

  17. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Spacetime. Cambridge University Press, Cambridge (1973)

    Book  Google Scholar 

  18. Ansoldi,S.: In: Conference on Black Holes and Naked Singularities, Milano, Italy (2007). arXiv:0802.0330 [gr-qc]

  19. Zaslavskii, O.B.: Phys. Lett. B 688, 278–280 (2010). https://doi.org/10.1016/j.physletb.2010.04.031

    Article  ADS  MathSciNet  Google Scholar 

  20. Sakharov, A.D.: Zh. Eksp. Teor. Fiz. 49, 345 (1966) [Sov. Phys. JETP 22, 241 (1966)]

  21. Gliner, E.B.: Sov. Phys. JETP 22, 378 (1966)

    ADS  Google Scholar 

  22. Bardeen, J.M.: In: Proceedings of International Conference GR5, Tbilisi, USSR, p. 174 (1968

  23. Bardeen, J.M.: arXiv:1406.4098

  24. Bardeen, J.M.: arXiv:1811.06683

  25. Hayward, S.A.: Phys. Rev. Lett. 96, 031103 (2006). https://doi.org/10.1103/PhysRevLett.96.031103

    Article  ADS  Google Scholar 

  26. Roman, T.A., Bergmann, P.G.: Phys. Rev. D 28, 1265 (1983). https://doi.org/10.1103/PhysRevD.28.1265

    Article  ADS  MathSciNet  Google Scholar 

  27. Dymnikova, I.: Gen. Relativ. Gravit. 24, 235 (1992). https://doi.org/10.1007/BF00760226

  28. Dymnikova, I.: Int. J. Mod. Phys. D 12, 1015 (2003). https://doi.org/10.1142/S021827180300358X

    Article  ADS  MathSciNet  Google Scholar 

  29. Ayon-Beato, E., Garcia, A.: Phys. Rev. Lett. 80, 5056 (1998). https://doi.org/10.1103/PhysRevLett.80.5056

    Article  ADS  Google Scholar 

  30. Ayon-Beato, E., Garcia, A.: Phys. Lett. B 464, 25 (1999). https://doi.org/10.1016/S0370-2693/899/901038-2

    Article  ADS  MathSciNet  Google Scholar 

  31. Frolov, V.P.: Phys. Rev. D 94, 104056 (2016). https://doi.org/10.1103/PhysRevD.94.104056

    Article  ADS  MathSciNet  Google Scholar 

  32. Frolov, V.P.: J. High Energy Phys. 05, 049 (2014). https://doi.org/10.1007/JHEP05(2014)049

    Article  ADS  Google Scholar 

  33. Frolov, V.P., Zelnikov, A.: Phys. Rev. D 95, 124028 (2017). https://doi.org/10.1103/PhysRevD.95.124028

    Article  ADS  MathSciNet  Google Scholar 

  34. Balart, L., Vagenas, E.C.: Phys. Rev. D 90, 124045 (2014). https://doi.org/10.1103/PhysRevD.90.124045

    Article  ADS  Google Scholar 

  35. Bronnikov, K.A.: Phys. Rev. D 63, 044005 (2001). https://doi.org/10.1103/PhysRevD.63.044005

    Article  ADS  MathSciNet  Google Scholar 

  36. Simpson, A., Visser, M.: J. Cosmol. Astropart. Phys. 02, 042 (2019). https://doi.org/10.1088/1475-7516/2019/02/042

    Article  ADS  Google Scholar 

  37. Carballo-Rubio, R., Di Filippo, F., Liberati, S., Pacilio, C., Visser, M.: J. High Energy Phys. 07, 023 (2018). https://doi.org/10.1007/JHEP07(2018)023

    Article  ADS  Google Scholar 

  38. Carballo-Rubio, R., Di Filippo, F., Liberati, S., Visser, M.: Phys. Rev. D 98, 124009 (2018). https://doi.org/10.1103/PhysRevD.98.124009

    Article  ADS  MathSciNet  Google Scholar 

  39. Bambi, C., Modesto, L.: Phys. Lett. B 721, 329 (2013). https://doi.org/10.1016/j.physletb.2013.03.025

    Article  ADS  MathSciNet  Google Scholar 

  40. Ghosh, S.G., Maharaj, S.D.: Eur. Phys. J. C 75, 7 (2015). https://doi.org/10.1140/epjc/s10052-014-3222-7

    Article  ADS  Google Scholar 

  41. Sajadi, S., Riazi, N.: Gen. Relativ. Gravit. 49, 45 (2017). https://doi.org/10.1007/s10714-017-2209-8

    Article  ADS  Google Scholar 

  42. Roy, P.D., Kar, S.: Phys. Rev. D 106, 044028 (2022). https://doi.org/10.1103/PhysRevD.106.044028

    Article  ADS  Google Scholar 

  43. Pal, K., Pal, K., Roy, P., Sarkar, T.: Eur. Phys. J. C 83, 397 (2023). https://doi.org/10.1140/epjc/s10052-023-11558-z

    Article  ADS  Google Scholar 

  44. Ayon-Beato, E., Garcia, A.: Gen. Relativ. Gravit. 31, 629 (1999). https://doi.org/10.1023/A:1026640911319

    Article  ADS  Google Scholar 

  45. Ayon-Beato, E., Garcia, A.: Phys. Lett. B 493, 149 (2000). https://doi.org/10.1016/S0370-2693/800/901125-4

    Article  ADS  MathSciNet  Google Scholar 

  46. Ayon-Beato, E., Garcia, A.: Gen. Relativ. Gravit. 37, 635 (2005). https://doi.org/10.1007/s10714-005-0050-y

    Article  ADS  Google Scholar 

  47. Fan, Z.Y.: Eur. Phys. J. C 77, 266 (2017). https://doi.org/10.1140/epjc/s10052-017-4830-9

    Article  ADS  Google Scholar 

  48. Bronnikov, K.A.: Phys. Rev. Lett. 85, 4641 (2000). https://doi.org/10.1103/PhysRevLett.85.4641

    Article  ADS  Google Scholar 

  49. Bronnikov, K.A.: Int. J. Mod. Phys. D 27, 1841005 (2018). https://doi.org/10.1142/S0218271818410055

    Article  ADS  Google Scholar 

  50. Fan, Z.Y., Wang, X.: Phys. Rev. D 94, 124027 (2016). https://doi.org/10.1103/PhysRevD.94.124027

    Article  ADS  MathSciNet  Google Scholar 

  51. Bokulić, A., Smolić, I., Jurić, T.: Phys. Rev. D 106, 064020 (2022). https://doi.org/10.1103/PhysRevD.106.064020

    Article  ADS  Google Scholar 

  52. Poisson, E., Israel, W.: Phys. Rev. Lett. 63, 1663 (1989). https://doi.org/10.1103/PhysRevLett.63.1663

    Article  ADS  MathSciNet  Google Scholar 

  53. Poisson, E., Israel, W.: Phys. Rev. D 41, 1796 (1990). https://doi.org/10.1103/PhysRevD.41.1796

    Article  ADS  MathSciNet  Google Scholar 

  54. Bonanno, A., Khosravi, A.-P., Saueressig, F.: Phys. Rev. D 103, 124027 (2021). https://doi.org/10.1103/PhysRevD.103.124027

    Article  ADS  Google Scholar 

  55. Carballo-Rubio, R., Di Filippo, F., Liberati, S., Pacilio, C., Visser, M.: J. Cosmol. Astropart. Phys. 09, 118 (2022). https://doi.org/10.1007/JHEP09/82022/9118

    Article  Google Scholar 

  56. Einstein, A., Rosen, N.: Phys. Rev. 48, 73 (1935). https://doi.org/10.1103/PhysRev.48.73

    Article  ADS  Google Scholar 

  57. Zakhary, E., Mcintosh, C.B.G.: Gen. Relativ. Gravit. 29, 539 (1997)

    Article  ADS  Google Scholar 

  58. Hu, H.W., Lan, C., Miao Lan, Y.G.: arXiv:2303.03931 [gr-qc]

  59. Wald, R.M.: General Relativity. Chicago Univ. Pr, Chicago (1984)

    Book  Google Scholar 

  60. Zhou, T., Modesto, L.: Phys. Rev. D 107, 044016 (2023). https://doi.org/10.1103/PhysRevD.107.044016

    Article  ADS  Google Scholar 

  61. Carballo-Rubio, R., Di Filippo, F., Liberati, S., Visser, M.: Phys. Rev. D 101, 084047 (2020). https://doi.org/10.1103/PhysRevD.101.084047

    Article  ADS  MathSciNet  Google Scholar 

  62. Carballo-Rubio, R., Di Filippo, F., Liberati, S., Visser, M.: J. High Energy Phys. 02, 122 (2022). https://doi.org/10.1007/JHEP02(2022)122

    Article  ADS  Google Scholar 

  63. Pal, K., Pal, K., Sarkar, T.: arXiv:2307.09382 (2023)

  64. Torres, R.: arXiv:2208.12713 [gr-qc]

  65. Toshmatov, B., Bambi, C., Ahmedov, B., Abdujabbarov, A., Stuchlik, Z.: Eur. Phys. J. C 77, 542 (2017). https://doi.org/10.1140/epjc/s10052-017-5112-2

    Article  ADS  Google Scholar 

  66. Lan, C., Miao, Y.-G., Zang, Y.-X.: Eur. Phys. J. C 82, 231 (2022). https://doi.org/10.1140/epjc/s10052-022-10200-8

    Article  ADS  Google Scholar 

  67. Bronnikov, K.A.: Particles 1, 5 (2018). https://doi.org/10.3390/particles1010005

    Article  Google Scholar 

  68. Bronnikov, K.A., Fabris, J.C.: Phys. Rev. Lett. 96, 251101 (2006). https://doi.org/10.1103/PhysRevLett.96.251101

    Article  ADS  MathSciNet  Google Scholar 

  69. Bronnikov, K.A., Walia, R.K.: Phys. Rev. D 105, 044039 (2022). https://doi.org/10.1103/PhysRevD.105.044039

    Article  ADS  Google Scholar 

  70. Maartens, R., Koyama, K.: Living Rev. Relativ. 13, 5 (2010). https://doi.org/10.12942/lrr-2010-5

    Article  ADS  Google Scholar 

  71. Bardeen, J.M.: In: DeWitt, C., DeWitt, B.S. (eds.) Black Holes (Les Astres Occlus), (New York: Gordon and Breach), 215 (1973). https://www.google.co.in/books/edition/Black_Holes/sUr-EVqZLckC?hl=en &gbpv=1 &pg=PA215 &printsec=frontcover

  72. Perlick, V., Tsupko, O.Y.: Phys. Rep. 947, 1–39 (2022). https://doi.org/10.1016/j.physrep.2021.10.004

    Article  ADS  MathSciNet  Google Scholar 

  73. Claudel, C.M., Virbhadra, K.S., Ellis, G.F.R.: J. Math. Phys. 42, 818–838 (2001). https://doi.org/10.1063/1.1308507

    Article  ADS  MathSciNet  Google Scholar 

  74. Chen, D., Gao, C., Liu, X., Yu, C.: Eur. Phys. J. C 81, 700 (2021). https://doi.org/10.1140/epjc/s10052-021-09510-0

    Article  ADS  Google Scholar 

  75. Medeiros, L., et al.: Astrophys. J. Lett. 947, L7 (2023). https://doi.org/10.3847/2041-8213/acc32d

    Article  ADS  Google Scholar 

  76. Blakeslee, J.P., et al.: Astrophys. J. Lett. 694, 556–572 (2009). https://doi.org/10.1088/0004-637X/694/1/556

    Article  Google Scholar 

  77. Bird, S., Harris, W.E., Blakeslee, J.P., Flynn, C.: Astron. Astrophys. 524, A71 (2010). https://doi.org/10.1051/0004-6361/201014876

    Article  ADS  Google Scholar 

  78. Cantiello, M., et al.: Astrophys. J. Lett. 854, L31 (2018). https://doi.org/10.3847/2041-8213/aaad64

    Article  ADS  Google Scholar 

  79. Do, T., et al.: Science 365(6454), 664–668 (2019)

    Article  ADS  Google Scholar 

  80. Abuter, R., et al.: Astron. Astrophys. 657, L12 (2022). https://doi.org/10.1051/0004-6361/202142465

    Article  ADS  Google Scholar 

  81. Abuter, R., et al.: Astron. Astrophys. 636, L5 (2020). https://doi.org/10.1051/0004-6361/202037813

    Article  ADS  Google Scholar 

  82. Dai, De.-C., Stojkovic, D.: Phys. Rev. D 100, 083513 (2019). https://doi.org/10.48550/arXiv.1910.00429

    Article  ADS  MathSciNet  Google Scholar 

  83. Ghasemi-Nodehi, M., Chakraborty, C., Yu, Q., Lu, Y.: Eur. Phys. J. C 81, 939 (2021). https://doi.org/10.48550/arXiv.2109.14903

    Article  ADS  Google Scholar 

  84. Takahashi, R.: Astrophys. J. 611, 996 (2004). https://doi.org/10.48550/arXiv.astro-ph/0405099

    Article  ADS  Google Scholar 

  85. Synge, J.L.: Mon. Not. R. Soc. 131, 462 (1966). https://doi.org/10.1093/mnras/131.3.463

    Article  ADS  Google Scholar 

  86. Simonetti, J.H., Kavic, M.J., Minic, D., Stojkovic, D., Dai, De.-C.: Phys. Rev. D 104, 081502 (2021). https://doi.org/10.48550/arXiv.2007.12184

    Article  ADS  Google Scholar 

  87. Repin, S.V., Bugaev, M.A., Novikov, I.D., Novikov, I.D., Jr.: Astron. Rep. 66(10), 835 (2022)

    Article  ADS  Google Scholar 

  88. Bugaev, M.A., Novikov, I.D., Repin, S.V., Samorodskaya, P.S.: arXiv:2305.18041

  89. Newman, E.T., Janis, A.I.: J. Math. Phys. 6, 915 (1965). https://doi.org/10.1063/1.1704350

    Article  ADS  Google Scholar 

Download references

Acknowledgements

AK expresses gratitude to Poulami Dutta Roy, Soumya Jana and Pritam Banerjee for their valuable inputs during various discussions. He also thanks Indian Institute of Technology Kharagpur, India, for support through a fellowship and for allowing him to use available computational facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayan Kar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kar, A., Kar, S. Novel regular black holes: geometry, source and shadow. Gen Relativ Gravit 56, 52 (2024). https://doi.org/10.1007/s10714-024-03238-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-024-03238-4

Keywords

Navigation