Skip to main content
Log in

Exploring the possibility of interacting quintessence model as an alternative to the \(\Lambda \)CDM model

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

This study examines interacting quintessence dark energy models and their observational constraints for a general parameterization of the quintessence potential, which encompasses a broad range of popular potentials. Four different forms of interactions are considered. The analysis is done by expressing the system as a set of autonomous equations for each interaction. The Bayesian Model Comparison has been used to compare these models with the standard Lambda Cold Dark Matter (\(\Lambda \)CDM) model. Our analysis shows positive and moderate evidence for the interacting models over the \(\Lambda \)CDM model. We also report the status of the Hubble tension for these models, even though there is an increment in the best-fit value of the Hubble parameters, these models can not resolve the Hubble tension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://dx.doi.org/10.17909/T95Q4X.

  2. https://archive.stsci.edu/prepds/ps1cosmo/index.html.

References

  1. Riess, A.G., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998)

    ADS  Google Scholar 

  2. Perlmutter, S., et al.: Measurements of \(\Omega \) and \(\Lambda \) from 42 high redshift supernovae. Astrophys. J. 517, 565–586 (1999)

    ADS  MATH  Google Scholar 

  3. Meszaros, A.: On the reality of the accelerating universe. Astrophys. J. 580, 12–15 (2002)

    ADS  Google Scholar 

  4. Arnaud, M., et al.: Planck intermediate results. XXXI. Microwave survey of Galactic supernova remnants. Astron. Astrophys. 586, A134 (2016)

    Google Scholar 

  5. Ahn, C.P., Alexandroff, R., Prieto, C.A., Anderson, S.F., Anderton, T., Andrews, B.H., Aubourg, É., Bailey, S., Balbinot, E., Barnes, R., et al.: The ninth data release of the sloan digital sky survey: first spectroscopic data from the sdss-iii baryon oscillation spectroscopic survey. Astrophys. J. Suppl. Ser. 203(2), 21 (2012)

    ADS  Google Scholar 

  6. Padmanabhan, T.: Dark energy: mystery of the millennium. In AIP Conference Proceedings, volume 861, pages 179–196. American Institute of Physics, (2006)

  7. Aghanim, N., et al.: Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020). [Erratum: Astron.Astrophys. 652, C4 (2021)]

  8. Alam, S., Ata, M., Bailey, S., Beutler, F., Bizyaev, D., Blazek, J.A., Bolton, A.S., Brownstein, J.R., Burden, A., Chuang, C.-H., et al.: The clustering of galaxies in the completed sdss-iii baryon oscillation spectroscopic survey: cosmological analysis of the dr12 galaxy sample. Mon. Not. R. Astron. Soc. 470(3), 2617–2652 (2017)

    ADS  Google Scholar 

  9. Beutler, F., Blake, C., Colless, M., Jones, D.H.: Lister staveley-smith, lachlan campbell, quentin parker, will saunders, and fred watson. The 6df galaxy survey: baryon acoustic oscillations and the local hubble constant. Mon. Not. Roy. Astron. Soci. 416(4), 3017–3032 (2011)

    ADS  Google Scholar 

  10. Alam, S., Aubert, M., Avila, S., Balland, C., Bautista, J.E., Bershady, M.A., Bizyaev, D., Blanton, M.R., Bolton, A.S., Bovy, J., et al.: Completed sdss-iv extended baryon oscillation spectroscopic survey: cosmological implications from two decades of spectroscopic surveys at the apache point observatory. Phys. Rev. D, 103(8) (2021)

  11. Abbott, T.M.C., et al.: Dark energy survey year 1 results: cosmological constraints from galaxy clustering and weak lensing. Phys. Rev. D 98(4), 043526 (2018)

    ADS  Google Scholar 

  12. Macaulay, E., et al.: First cosmological results using type Ia supernovae from the dark energy survey: measurement of the hubble constant. Mon. Not. Roy. Astron. Soc. 486(2), 2184–2196 (2019)

    ADS  Google Scholar 

  13. Krause, E., et al.: Dark energy survey year 1 results: multi-probe methodology and simulated likelihood analyses 6 (2017)

  14. Riess, A.G., Casertano, S., Yuan, W., Macri, L.M., Scolnic, D.: Large magellanic cloud cepheid standards provide a 1% foundation for the determination of the hubble constant and stronger evidence for physics beyond \(\lambda \)cdm. Astrophys. J. 876(1), 85 (2019)

    ADS  Google Scholar 

  15. Wong, K.C., et al.: H0LiCOW—XIII. A 2.4 percent measurement of H0 from lensed quasars: 5.3 \({\sigma }\) tension between early- and late-Universe probes. Mon. Not. Roy. Astron. Soc. 498(1), 1420–1439 (2020)

    ADS  Google Scholar 

  16. Riess, A.G., Breuval, L., Yuan, W., Casertano, S., Macri, L.M., Bowers, J.B., Scolnic, D., Cantat-Gaudin, T., Anderson, R.I., Reyes, M.C.: Cluster cepheids with high precision gaia parallaxes, low zero-point uncertainties, and hubble space telescope photometry. Astrophys. J. 938(1), 36 (2022)

    ADS  Google Scholar 

  17. Amendola, L., Tsujikawa, S.: Dark Energy: Theory and Observations. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  18. Bamba, K., Capozziello, S., Nojiri, S., Odintsov, S.D.: Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 342, 155–228 (2012)

    ADS  MATH  Google Scholar 

  19. Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of dark energy. Int. J. Mod. Phys. D 15(11), 1753–1935 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Peebles, P.J.E., Ratra, B.: Quintessence: a review. Rev. Mod. Phys. 75(2), 559–606 (2003)

    ADS  Google Scholar 

  21. Armendariz-Picon, C., Mukhanov, V., Steinhardt, P.J.: k-Essence as a model for dark energy. Phys. Rev. Lett. 85(15), 4438–4441 (2001)

    ADS  Google Scholar 

  22. Roy, N., Goswami, S., Das, S.: Quintessence or phantom: study of scalar field dark energy models through a general parametrization of the hubble parameter. Phys. Dark Univ. 36, 101037 (2022)

    Google Scholar 

  23. Banerjee, A., Cai, H., Heisenberg, L.: Hubble sinks in the low-redshift swampland. Phys. Rev. D 103(8), L081305 (2021)

    ADS  Google Scholar 

  24. Lee, B.-H., Lee, W., Colgáin, E., Sheikh-Jabbari, M.M., Thakur, S.: Is local H \(_{0}\) at odds with dark energy EFT? JCAP 04(04), 004 (2022)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Krishnan, C., Colgáin, E.Ó., Sheikh-Jabbari, M.M., Yang, T.: Running Hubble tension and a H0 diagnostic. Phys. Rev. D 103(10), 103509 (2021)

    ADS  MathSciNet  Google Scholar 

  26. Roy, N., Banerjee, N.: Tracking quintessence: a dynamical systems study. Gen. Relativ. Gravit 46, 1651 (2014)

    ADS  MATH  Google Scholar 

  27. Roy, N., Bhadra, N.: Dynamical systems analysis of phantom dark energy models. JCAP 1806, 002 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Cedeño, F.X.L., Roy, N., Ureña-López, L.A.: Tracker phantom field and a cosmological constant: dynamics of a composite dark energy model (2021)

  29. Karwal, T., Kamionkowski, M.: Dark energy at early times, the Hubble parameter, and the string axiverse. Phys. Rev. D 94(10), 103523 (2016)

    ADS  Google Scholar 

  30. Peracaula, J.S., Gomez-Valent, A., Perez, J.D.C., Moreno-Pulido, C.: Running vacuum in the universe: phenomenological status in light of the latest observations, and its impact on the \({\sigma }_{8}\) and H\(_{0}\) Tensions. Universe 9(6), 262 (2023)

    ADS  Google Scholar 

  31. Rezaei, M., Sola Peracaula, J.: Running vacuum versus holographic dark energy: a cosmographic comparison. Eur. Phys. J. C 82(8), 765 (2022)

    ADS  Google Scholar 

  32. Rezaei, M., Malekjani, M., Sola, J.: Can dark energy be expressed as a power series of the Hubble parameter? Phys. Rev. D 100(2), 023539 (2019)

    ADS  MathSciNet  Google Scholar 

  33. Rezaei, M., Peracaula, J.S., Malekjani, M.: Cosmographic approach to Running Vacuum dark energy models: new constraints using BAOs and Hubble diagrams at higher redshifts. Mon. Not. Roy. Astron. Soc. 509(2), 2593–2608 (2021)

    ADS  Google Scholar 

  34. Valentino, E.D., Mukherjee, A., Sen, A.A.: Dark Energy with Phantom Crossing and the \(H_0\) tension (2020)

  35. Cai, R.-G., Wang, A.: Cosmology with interaction between phantom dark energy and dark matter and the coincidence problem. JCAP 03, 002 (2005)

    ADS  Google Scholar 

  36. Mangano, G., Miele, G., Pettorino, V.: Coupled quintessence and the coincidence problem. Mod. Phys. Lett. A 18(12), 831–842 (2003)

    ADS  Google Scholar 

  37. Sadjadi, H.M., Alimohammadi, M.: Cosmological coincidence problem in interactive dark energy models. Phys. Rev. D 74, 103007 (2006)

    ADS  Google Scholar 

  38. Wang, B., Abdalla, E., Atrio-Barandela, F., Pavon, D.: Dark matter and dark energy interactions: theoretical challenges, cosmological implications and observational signatures. Rep. Prog. Phys. 79(9), 096901 (2016)

    ADS  Google Scholar 

  39. Jesus, J.F., Escobal, A.A., Benndorf, D., Pereira, S.H.: Can dark matter–dark energy interaction alleviate the cosmic coincidence problem? Eur. Phys. J. C 82(3), 273 (2022)

    ADS  Google Scholar 

  40. Salvatelli, V., Marchini, A., Pogosian, L., Vittorio, N., Wu, Y.-C., Zavala, J.: Indications of a late-time interaction in the dark sector. Phys. Rev. Lett. 113(18), 181301 (2014)

    ADS  Google Scholar 

  41. Costa, A., Ferreira, P.G.: Hubble tension and interacting dark energy. J. Cosmol. Astropart. Phys. 2017(12), 013 (2017)

    Google Scholar 

  42. Di Valentino, E., Melchiorri, A., Silk, J.: Cosmological constraints from the combination of latest data sets: the role of dark energy interactions. Eur. Phys. J. C 79(2), 139 (2019)

    Google Scholar 

  43. Kumar, S., Kumar, S., Liao, K., Wang, Y.: Interacting dark energy models with a logarithmic interaction term and their implications on the hubble tension. Astrophys. Space Sci. 365(6), 207 (2020)

    Google Scholar 

  44. Di Valentino, E., Melchiorri, A., Mena, O., Vagnozzi, S.: Interacting dark energy in the early 2020s: a promising solution to the \(H_0\) and cosmic shear tensions. Phys. Dark Univ. 30, 100666 (2020)

    Google Scholar 

  45. Di Valentino, E., Melchiorri, A., Mena, O., Vagnozzi, S.: Nonminimal dark sector physics and cosmological tensions. Phys. Rev. D 101(6), 063502 (2020)

    ADS  Google Scholar 

  46. Yang, W., Pan, S., Di Valentino, E., Nunes, R.C., Vagnozzi, S., Mota, D.F.: Tale of stable interacting dark energy, observational signatures, and the \(H_0\) tension. JCAP 1809, 019 (2018)

    ADS  Google Scholar 

  47. Wang, D.: The multi-feature universe: Large parameter space cosmology and the swampland. Phys. Dark Univ. 28, 100545 (2020)

    ADS  Google Scholar 

  48. Amendola, L.: Coupled quintessence. Phys. Rev. D 62(4), 043511 (2000)

    ADS  Google Scholar 

  49. Farrar, G.R., Peebles, P.J.E.: Interacting dark matter and dark energy. Astrophys. J. 604(1), 1 (2004)

    ADS  Google Scholar 

  50. Tamanini, N.: Phenomenological models of dark energy interacting with dark matter. Phys. Rev. D 92(4), 043524 (2015)

    ADS  Google Scholar 

  51. Chimento, L.P.: Linear and nonlinear interactions in the dark sector. Phys. Rev. D 81(4), 043525 (2010)

    ADS  MathSciNet  Google Scholar 

  52. Pan, S., Bhattacharya, S., Chakraborty, S.: An analytic model for interacting dark energy and its observational constraints. Mon. Not. R. Astron. Soc. 452(3), 3038–3046 (2015)

    ADS  Google Scholar 

  53. Pettorino, V., Baccigalupi, C., Mangano, G.: Extended quintessence with an exponential coupling. J. Cosmol. Astropart. Phys. 2005(01), 014 (2005)

    Google Scholar 

  54. Pettorino, V., Baccigalupi, C.: Coupled and extended quintessence: theoretical differences and structure formation. Phys. Rev. D 77(10), 103003 (2008)

    ADS  Google Scholar 

  55. Khyllep, W., Dutta, J., Basilakos, S., Saridakis, E.N.: Background evolution and growth of structures in interacting dark energy scenarios through dynamical system analysis. Phys. Rev. D 105(4), 043511 (2022)

    ADS  MathSciNet  Google Scholar 

  56. Caldera-Cabral, G., Maartens, R., Urena-Lopez, L.A.: Dynamics of interacting dark energy. Phys. Rev. D 79, 063518 (2009)

    ADS  Google Scholar 

  57. Amendola, L.: Coupled quintessence. Phys. Rev. D 62, 043511 (2000)

    ADS  Google Scholar 

  58. Boehmer, C.G., Caldera-Cabral, G., Lazkoz, R., Maartens, R.: Dynamics of dark energy with a coupling to dark matter. Phys. Rev. D 78, 023505 (2008)

    ADS  MATH  Google Scholar 

  59. Zonunmawia, H., Khyllep, W., Roy, N., Dutta, J., Tamanini, N.: Extended phase space analysis of interacting dark energy models in loop quantum cosmology. Phys. Rev. D 96(8), 083527 (2017)

    ADS  MathSciNet  Google Scholar 

  60. Hussain, S., Chakraborty, S., Roy, N., Bhattacharya, K.: Dynamical systems analysis of tachyon-dark-energy models from a new perspective. Phys. Rev. D 107(6), 063515 (2023)

    ADS  MathSciNet  Google Scholar 

  61. Bahamonde, S., Böhmer, C.G., Carloni, S., Copeland, E.J., Fang, W., Tamanini, N.: Dynamical systems applied to cosmology: dark energy and modified gravity. Phys. Rep. 775–777, 1–122 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  62. Roy, N., Gonzalez-Morales, A.X., Urena-Lopez, L.A.: New general parametrization of quintessence fields and its observational constraints. Phys. Rev. D 98(6), 063530 (2018)

    ADS  Google Scholar 

  63. Ureña-López, L.A., Gonzalez-Morales, A.X.: Towards accurate cosmological predictions for rapidly oscillating scalar fields as dark matter. JCAP 1607(07), 048 (2016)

    ADS  MathSciNet  Google Scholar 

  64. Ureña-López, L.A., Roy, N.: Generalized tracker quintessence models for dark energy. Phys. Rev. D 102(6) (2020)

  65. Wetterich, C.: The Cosmon model for an asymptotically vanishing time dependent cosmological ‘constant’. Astron. Astrophys. 301, 321–328 (1995)

    ADS  Google Scholar 

  66. Kumar, S., Nunes, R.C., Yadav, S.K.: Dark sector interaction: a remedy of the tensions between CMB and LSS data. Eur. Phys. J. C 79(7), 576 (2019)

    ADS  Google Scholar 

  67. Lesgourgues, J.: The Cosmic Linear Anisotropy Solving System (CLASS) III: Comparision with CAMB for LambdaCDM (2011)

  68. Blas, D., Lesgourgues, J., Tram, T.: The cosmic linear anisotropy solving system (CLASS) II: approximation schemes. JCAP 1107, 034 (2011)

    ADS  Google Scholar 

  69. Lesgourgues, J., Tram, T.: The cosmic linear anisotropy solving system (CLASS) IV: efficient implementation of non-cold relics. JCAP 1109, 032 (2011)

    ADS  Google Scholar 

  70. Roy, N., Bamba, K.: Arbitrariness of potentials in interacting quintessence models. Phys. Rev. D 99(12), 123520 (2019)

    ADS  MathSciNet  Google Scholar 

  71. Brinckmann, T., Lesgourgues, J.: MontePython 3: boosted MCMC sampler and other features (2018)

  72. Reiss, A.G., et al.: Supernova serach team. Astron. J. 116, 1009 (1998)

    ADS  Google Scholar 

  73. Scolnic, D.M., et al.: The complete light-curve sample of spectroscopically confirmed SNe Ia from Pan-STARRS1 and cosmological constraints from the combined pantheon sample. Astrophys. J. 859(2), 101 (2018)

    ADS  Google Scholar 

  74. Alam, S., Ata, M., Bailey, S., Beutler, F., Bizyaev, D., Blazek, J.A., Bolton, A.S., Brownstein, J.R., Burden, A., Chuang, C.-H., et al.: The clustering of galaxies in the completed sdss-iii baryon oscillation spectroscopic survey: cosmological analysis of the dr12 galaxy sample. Mon. Not. R. Astron. Soc. 470(3), 2617–2652 (2017)

    ADS  Google Scholar 

  75. Agathe, V.d.S., et al.: Baryon acoustic oscillations at z = 2.34 from the correlations of Ly\(\alpha \) absorption in eBOSS DR14. Astron. Astrophys. 629, A85 (2019)

  76. Cuceu, A., Farr, J., Lemos, P., Font-Ribera, A.: Baryon acoustic oscillations and the hubble constant: past, present and future. J. Cosmol. Astropart. Phys. 2019(10), 044–044 (2019)

    Google Scholar 

  77. Kazin, E.A., Koda, J., Blake, C., Padmanabhan, N., Brough, S., Colless, M., Contreras, C., Couch, W., Croom, S., Croton, D.J., et al.: The wigglez dark energy survey: improved distance measurements to z = 1 with reconstruction of the baryonic acoustic feature. Mon. Not. R. Astron. Soc. 441(4), 3524–3542 (2014)

    ADS  Google Scholar 

  78. Eisenstein, D.J., Wayne, H.: Baryonic features in the matter transfer function. Astrophys. J. 496, 605 (1998)

    ADS  Google Scholar 

  79. Martinelli, M., et al.: Euclid: forecast constraints on the cosmic distance duality relation with complementary external probes. Astron. Astrophys. 644, A80 (2020)

    Google Scholar 

  80. Aghanim, N., et al.: Planck 2018 results. VI, Cosmological parameters (2018)

  81. Arendse, N., Wojtak, R.J., Agnello, A., Chen, Geoff C.-F., Fassnacht, C.D., Sluse, D., Hilbert, S.M., Martin, B., Vivien, W., Kenneth, C., et al.: Cosmic dissonance: are new physics or systematics behind a short sound horizon? Astron. Astrophys. 639, A57 (2020)

  82. Sabti, N., Muñoz, J.B., Blas, D.: Galaxy luminosity function pipeline for cosmology and astrophysics. Phys. Rev. D 105(4), 043518 (2022)

    ADS  Google Scholar 

  83. Camarena, D., Marra, V.: Impact of the cosmic variance on \(H_0\) on cosmological analyses. Phys. Rev. D 98(2), 023537 (2018)

    ADS  Google Scholar 

  84. Riess, A.G., Casertano, S., Yuan, W., Macri, L.M., Scolnic, D.: Large Magellanic cloud cepheid standards provide a 1% foundation for the determination of the hubble constant and stronger evidence for physics beyond \(\Lambda \)CDM. Astrophys. J. 876(1), 85 (2019)

    ADS  Google Scholar 

  85. Alam, S., et al.: The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample. Mon. Not. Roy. Astron. Soc. 470(3), 2617–2652 (2017)

    ADS  Google Scholar 

  86. Zarrouk, P., et al.: The clustering of the SDSS-IV extended baryon oscillation spectroscopic survey dr14 quasar sample: measurement of the growth rate of structure from the anisotropic correlation function between redshift 0.8 and 2.2. Mon. Not. Roy. Astron. Soc. 477(2), 1639–1663 (2018)

    ADS  MathSciNet  Google Scholar 

  87. Blomqvist, M., et al.: Baryon acoustic oscillations from the cross-correlation of Ly\(\alpha \) absorption and quasars in eBOSS DR14. Astron. Astrophys. 629, A86 (2019)

    Google Scholar 

  88. Trotta, R.: Applications of Bayesian model selection to cosmological parameters. Mon. Not. Roy. Astron. Soc. 378, 72–82 (2007)

    ADS  Google Scholar 

  89. Heavens, A., Fantaye, Y., Mootoovaloo, A., Eggers, H., Hosenie, Z., Kroon, S., Sellentin, E.: Marginal Likelihoods from Monte Carlo Markov Chains 4 (2017)

  90. Rezaei, M., Malekjani, M.: Comparison between different methods of model selection in cosmology. Eur. Phys. J. Plus 136(2), 219 (2021)

    Google Scholar 

Download references

Acknowledgements

The author acknowledges the use of the Chalawan High Performance Computing cluster, operated and maintained by the National Astronomical Research Institute of Thailand (NARIT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandan Roy.

Ethics declarations

Funding

The research is supported by Mahidol University, Thailand through the research project MU-MRC-MGR 04/2565.

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, N. Exploring the possibility of interacting quintessence model as an alternative to the \(\Lambda \)CDM model. Gen Relativ Gravit 55, 115 (2023). https://doi.org/10.1007/s10714-023-03160-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-023-03160-1

Keywords

Navigation