Skip to main content
Log in

Gyroscopic precession in the vicinity of a static blackhole’s event horizon

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this article, we investigate gyroscopic precession in the vicinity of a spherically symmetric static event horizon. Our goal is to address whether the gyroscopic precession frequency diverges when approaching an event horizon. To do so, we employ the Frenet–Serret formalism of gyroscopic precession, which provides a complete covariant formalism, and extend it to include arbitrary timelike curves. We analyze the precession frequency near the Schwarzschild and Schwarzschild-anti-de-Sitter black holes, using horizon-penetrating Kerr–Schild coordinates to eliminate coordinate singularities near the horizon. Our study shows that a diverging gyroscopic precession frequency is not a universal feature for a trajectory crossing an event horizon. As a counter-example, we construct a timelike curve passing through the event horizon along which the gyroscopic precession frequency remains finite at the horizon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availibility

There is no associated data with the manuscript.

References

  1. Semerák, O.: What forces act in relativistic gyroscope precession? Class. Quantum Gravity 13(11), 2987 (1996). https://doi.org/10.1088/0264-9381/13/11/014

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Jonsson, R.M.: Gyroscope precession in special and general relativity from basic principles. Am. J. Phys. 75(5), 463–471 (2007). https://doi.org/10.1119/1.2719202

    Article  ADS  Google Scholar 

  3. Rindler, W., Perlick, V.: Rotating coordinates as tools for calculating circular geodesics and gyroscopic precession. Gen. Relativ. Gravit. 22, 1067–1081 (1990). https://doi.org/10.1007/BF00757816

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Thirring, H.: Phys. Zs 19, 33 (1918). [English translation in Gen. Rel. Grav. 16 (1984), 712]

  5. Lense, J., Thirring, H.: Phys. Zs 19, 156 (1918). [English translation in Gen. Rel. Grav. 16 (1984), 727]

  6. Lanczos, K.: Zum rotationsproblem der allgemeinen relativitätstheorie. Zeitschrift für Physik 14, 204 (1923)

    Article  ADS  MATH  Google Scholar 

  7. Ciufolini, I., Pavlis, E.C.: A confirmation of the general relativistic prediction of the lense-thirring effect. Nature 431, 958–960 (2004). https://doi.org/10.1038/nature03007

    Article  ADS  Google Scholar 

  8. ...Everitt, C.W.F., DeBra, D.B., Parkinson, B.W., Turneaure, J.P., Conklin, J.W., Heifetz, M.I., Keiser, G.M., Silbergleit, A.S., Holmes, T., Kolodziejczak, J., Al-Meshari, M., Mester, J.C., Muhlfelder, B., Solomonik, V.G., Stahl, K., Worden, P.W., Bencze, W., Buchman, S., Clarke, B., Al-Jadaan, A., Al-Jibreen, H., Li, J., Lipa, J.A., Lockhart, J.M., Al-Suwaidan, B., Taber, M., Wang, S.: Gravity probe b: final results of a space experiment to test general relativity. Phys. Rev. Lett. 106, 221101 (2011). https://doi.org/10.1103/PhysRevLett.106.221101

    Article  ADS  Google Scholar 

  9. Chakraborty, C., Kocherlakota, P., Patil, M., Bhattacharyya, S., Joshi, P.S., Królak, A.: Distinguishing Kerr naked singularities and black holes using the spin precession of a test gyro in strong gravitational fields. Phys. Rev. D 95, 084024 (2017). https://doi.org/10.1103/PhysRevD.95.084024

    Article  ADS  Google Scholar 

  10. Chakraborty, C., Kocherlakota, P., Joshi, P.S.: Spin precession in a black hole and naked singularity spacetimes. Phys. Rev. D 95, 044006 (2017). https://doi.org/10.1103/PhysRevD.95.044006

    Article  ADS  MathSciNet  Google Scholar 

  11. Bini, D., Geralico, A., Jantzen, R.T.: Gyroscope precession along unbound equatorial plane orbits around a Kerr black hole. Phys. Rev. D 94, 124002 (2016). https://doi.org/10.1103/PhysRevD.94.124002

    Article  ADS  MathSciNet  Google Scholar 

  12. Bini, D., Geralico, A., Jantzen, R.T.: Gyroscope precession along bound equatorial plane orbits around a Kerr black hole. Phys. Rev. D 94, 064066 (2016). https://doi.org/10.1103/PhysRevD.94.064066

    Article  ADS  MathSciNet  Google Scholar 

  13. Bini, D., Geralico, A., Jantzen, R.T.: Gyroscope precession along general timelike geodesics in a Kerr black hole spacetime. Phys. Rev. D 95, 124022 (2017). https://doi.org/10.1103/PhysRevD.95.124022

    Article  ADS  MathSciNet  Google Scholar 

  14. Chakraborty, C., Majumdar, P.: Spinning gyroscope in an acoustic black hole: precession effects and observational aspects. Eur. Phys. J. C 80, 493 (2020). https://doi.org/10.1140/epjc/s10052-020-8060-1

    Article  ADS  Google Scholar 

  15. Nayak, K.R., Vishveshwara, C.V.: Gyroscopic precession and inertial forces in the kerr–newman spacetime. Class. Quantum Gravity 13(7), 1783 (1996). https://doi.org/10.1088/0264-9381/13/7/012

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Nayak, K.R., Vishveshwara, C.V.: Gyroscopic precession and inertial forces in axially symmetric stationary spacetimes. Gen. Relativ. Gravit. 30, 593–615 (1998). https://doi.org/10.1023/A:1018870208493

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Semerak, O.: Gyroscope on polar orbit in the Kerr field. Gen. Relat. Gravit. 29, 153–159 (1997). https://doi.org/10.1023/A:1010231810078

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Chakraborty, C., Majumdar, P.: Strong gravity lense-thirring precession in Kerr and Kerr-Taub-nut spacetimes. Class. Quantum Gravity 31(7), 075006 (2014). https://doi.org/10.1088/0264-9381/31/7/075006

    Article  ADS  MATH  Google Scholar 

  19. Bini, D., Jantzen, R.T., Merloni, A.: Geometric interpretation of the Frenet–Serret frame description of circular orbits in stationary axisymmetric spacetimes. Class. Quantum Gravity 16(4), 1333 (1999). https://doi.org/10.1088/0264-9381/16/4/022

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Ramachandra, B.S., Vishveshwara, C.V.: Physical effects in the Vaidya–Einstein–Kerr spacetime. Class. Quantum Gravity 20(24), 5253 (2003). https://doi.org/10.1088/0264-9381/20/24/002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Iyer, B.R., Vishveshwara, C.V.: Frenet–Serret description of gyroscopic precession. Phys. Rev. D 48, 5706–5720 (1993). https://doi.org/10.1103/PhysRevD.48.5706

    Article  ADS  Google Scholar 

  22. Misner, Charles W., K.S.T., Wheeler, J.A.: Gravitation. W. H. Freeman, New York (1973)

  23. Ciufolini, I., Wheeler, J.A.: Gravitation and Inertia. Princeton University Press, New Jersey (1995)

    Book  MATH  Google Scholar 

  24. Bini, D., de Felice, F., Jantzen, R.T.: Absolute and relative Frenet–Serret frames and Fermi–Walker transport. Class. Quantum Gravity 16(6), 2105 (1999). https://doi.org/10.1088/0264-9381/16/6/333

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Bini, D., Cherubini, C., Geralico, A., Jantzen, R.T.: Physical frames along circular orbits in stationary axisymmetric spacetimes. Gen. Relativ. Gravit. 40, 985–1012 (2008). https://doi.org/10.1007/s10714-007-0587-z

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Honig, E., Schucking, E.L., Vishveshwara, C.V.: Motion of charged particles in homogeneous electromagnetic fields. J. Math. Phys. 15(6), 774–781 (1974). https://doi.org/10.1063/1.1666728

    Article  ADS  MathSciNet  Google Scholar 

  27. Iyer, B.R., Vishveshwara, C.V.: The Frenet–Serret formalism and black holes in higher dimensions. Class. Quantum Gravity 5(7), 961 (1988). https://doi.org/10.1088/0264-9381/5/7/005

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Semerak, O.: Circular orbits in stationary axisymmetric spacetimes. Gen. Relativ. Gravit. 30, 1203–1215 (1998). https://doi.org/10.1023/A:1026694811879

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Nayak, K.R., Vishveshwara, C.V.: Gyroscopic precession and centrifugal force in the ernst spacetime. Gen. Relativ. Gravit. 29, 291–306 (1997). https://doi.org/10.1023/A:1010216801417

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Wald, R.M.: General Relativity. University of Chicago Press, Chicago and London (1984)

    Book  MATH  Google Scholar 

  31. Chandrasekhar, S.: The Mathematical Theory of Black Holes, vol. 69. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  32. Cruz, N., Olivares, M., Villanueva, J.R.: The geodesic structure of the Schwarzschild anti-de sitter black hole. Class. Quantum Gravity 22(6), 1167 (2005). https://doi.org/10.1088/0264-9381/22/6/016

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We want to acknowledge the anonymous reviewers for their valuable suggestions for improving the clarity and presentation of the manuscript.

Funding

PM and RKN acknowledge support from the Ministry of Human Resource Development (MHRD), India, IISER Kolkata and the Center of Excellence in Space Sciences (CESSI).

Author information

Authors and Affiliations

Authors

Contributions

All authors have equal contributions in preparing the manuscript.

Corresponding author

Correspondence to K. Rajesh Nayak.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of the manuscript.

Ethical approval

Not applicable to this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumder, P., Nayak, K.R. Gyroscopic precession in the vicinity of a static blackhole’s event horizon. Gen Relativ Gravit 55, 59 (2023). https://doi.org/10.1007/s10714-023-03108-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-023-03108-5

Keywords

Navigation