Skip to main content
Log in

Dressed black holes in the new tensor–vector–scalar theory

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript


As incarnations of gravity in its prime, black holes are arguably the best target for us to demystify gravity. Keeping in mind the prominent role black holes play in gravitational wave astronomy, it becomes a must for a theory to possess black hole solutions with only measurable departures from their general relativity counterparts. In this paper, we present black holes in a tensor–vector–scalar representation of relativistic modified Newtonian dynamics. We find that the theory allows Schwarzschild and nearly-Schwarzschild black holes as solutions, while the nontrivial scalar and vector fields generally diverge at the event horizon. Whether this is a physical pathology or not poses a challenge for these solutions, and by extension, the model. However, even if it is, this pathology could be overcome when the black hole hair vanishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Code Availability

A Mathematica notebook for the derivation of the results of this work can be downloaded from GitHub [28].


  1. The interested reader may check them and possibly extend the work using our publicly available codes [28].

  2. Our usage of ‘necessary condition’ concurs with the physics language, which is an equation derived from some ‘parent’ equations. For example, the wave equation is a necessary condition of the Maxwell equations, meaning that the fields propagate in media. Solutions of Maxwell equations always satisfy the wave equation, but not the other way around, that is, not all propagating waves are solutions of the Maxwell equations, unless the electric and magnetic fields are transverse with each other and the wave direction. We take advantage of the necessary condition nonetheless by substituting its solution back to the parent equations.

  3. The interested reader may start with Eqs. (36) and (37) and take the similar steps from there.


  1. Abbott, B.P. et al.: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016). arXiv:1602.03837 [gr-qc].

  2. Abbott, R. et al.: Population properties of compact objects from the second LIGO-Virgo gravitational-wave transient catalog. Astrophys. J. Lett. 913(1), 7 (2021). arXiv:2010.14533 [astro-ph.HE].

  3. Akiyama, K. et al.: First M87 event horizon telescope results. I. The shadow of the supermassive black hole. Astrophys. J. Lett. 875, 1 (2019). arXiv:1906.11238 [astro-ph.GA].

  4. Akiyama, K. et al.: First M87 event horizon telescope results. VI. The shadow and mass of the central black hole. Astrophys. J. Lett. 875(1), 6 (2019). arXiv:1906.11243 [astro-ph.GA].

  5. Israel, W.: Event horizons in static vacuum space-times. Phys. Rev. 164, 1776–1779 (1967).

    Article  ADS  Google Scholar 

  6. Israel, W.: Event horizons in static electrovac space-times. Commun. Math. Phys. 8, 245–260 (1968).

    Article  ADS  MathSciNet  Google Scholar 

  7. Carter, B.: Axisymmetric black hole has only two degrees of freedom. Phys. Rev. Lett. 26, 331–333 (1971).

    Article  ADS  Google Scholar 

  8. Bekenstein, J.D.: Novel no-scalar-hair theorem for black holes. Phys. Rev. D 51(12), 6608 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  9. Hertog, T.: Towards a novel no-hair theorem for black holes. Phys. Rev. D 74, 084008 (2006). arXiv:gr-qc/0608075.

  10. Hui, L., Nicolis, A.: No-hair theorem for the Galileon. Phys. Rev. Lett. 110, 241104 (2013). arXiv:1202.1296 [hep-th].

  11. Sotiriou, T.P.: Black holes and scalar fields. Class. Quant. Grav. 32(21), 214002 (2015). arXiv:1505.00248 [gr-qc].

  12. Barack, L. et al.: Black holes, gravitational waves and fundamental physics: a roadmap. Class. Quant. Grav. 36(14), 143001 (2019). arXiv:1806.05195 [gr-qc].

  13. Barausse, E. et al.: Prospects for fundamental physics with LISA. Gen. Rel. Grav. 52(8), 81 (2020). arXiv:2001.09793 [gr-qc].

  14. Milgrom, M.: A Modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 270, 365–370 (1983).

    Article  ADS  Google Scholar 

  15. Milgrom, M.: A modification of the Newtonian dynamics: implications for galaxies. Astrophys. J. 270, 371–383 (1983).

    Article  ADS  Google Scholar 

  16. Milgrom, M.: A modification of the Newtonian dynamics: implications for galaxy systems. Astrophys. J. 270, 384–389 (1983).

    Article  ADS  Google Scholar 

  17. Bekenstein, J.D.: Relativistic gravitation theory for the MOND paradigm. Phys. Rev. D 70, 083509 (2004). arXiv:astro-ph/0403694. [Erratum: Phys.Rev.D 71, 069901 (2005)]

  18. Sanders, R.H.: A tensor–vector–scalar framework for modified dynamics and cosmic dark matter. Mon. Not. R. Astron. Soc. 363, 459 (2005). arXiv:astro-ph/0502222.

  19. Skordis, C., Mota, D.F., Ferreira, P.G., Boehm, C.: Large scale structure in Bekenstein’s theory of relativistic modified Newtonian dynamics. Phys. Rev. Lett. 96, 011301 (2006). arXiv:astro-ph/0505519.

  20. Zlosnik, T.G., Ferreira, P.G., Starkman, G.D.: The vector–tensor nature of Bekenstein’s relativistic theory of modified gravity. Phys. Rev. D 74, 044037 (2006). arXiv:gr-qc/0606039.

  21. Babichev, E., Deffayet, C., Esposito-Farese, G.: Improving relativistic MOND with Galileon k-mouflage. Phys. Rev. D 84, 061502 (2011). arXiv:1106.2538 [gr-qc].

  22. Famaey, B., McGaugh, S.: Modified Newtonian dynamics (MOND): observational phenomenology and relativistic extensions. Living Rev. Rel. 15, 10 (2012). arXiv:1112.3960 [astro-ph.CO].

  23. Złośnik, T.G., Skordis, C.: Cosmology of the Galileon extension of Bekenstein’s theory of relativistic modified Newtonian dynamics. Phys. Rev. D 95(12), 124023 (2017). arXiv:1702.00683 [gr-qc].

  24. Skordis, C., Zlosnik, T.: Gravitational alternatives to dark matter with tensor mode speed equaling the speed of light. Phys. Rev. D 100, 104013 (2019).

    Article  ADS  Google Scholar 

  25. Skordis, C., Zlosnik, T.: New relativistic theory for modified newtonian dynamics. Phys. Rev. Lett. 127(16), 161302 (2021). arXiv:2007.00082 [astro-ph.CO].

  26. Skordis, C., Zlosnik, T.: Linear stability of the new relativistic theory of modified Newtonian dynamics (2021). arXiv:2109.13287 [gr-qc]

  27. Abbott, R., et al.: Tests of general relativity with GWTC-3 (2021). arXiv:2112.06861 [gr-qc]

  28. Bernardo, R.: reggiebernardo/notebooks: dark energy research notebooks. Zenodo (2021)

  29. Kashfi, T., Roshan, M.: Cosmological dynamics of relativistic MOND (2022). arXiv:2204.05672 [gr-qc]

  30. Giannios, D.: Spherically symmetric, static spacetimes in TeVeS. Phys. Rev. D 71, 103511 (2005). arXiv:gr-qc/0502122.

  31. Bernardo, R.C., Vega, I.: Hair-dressing Horndeski: an approach for obtaining hairy solutions in cubic Horndeski gravity. Phys. Rev. D 99(12), 124049 (2019). arXiv:1902.04988 [gr-qc].

  32. Bahamonde, S., Dialektopoulos, K.F., Escamilla-Rivera, C., Farrugia, G., Gakis, V., Hendry, M., Hohmann, M., Said, J.L., Mifsud, J., Di Valentino, E.: Teleparallel gravity: from theory to cosmology (2021). arXiv:2106.13793 [gr-qc]

  33. Babichev, E., Charmousis, C., Lehébel, A., Moskalets, T.: Black holes in a cubic Galileon universe. JCAP 09, 011 (2016). arXiv:1605.07438 [gr-qc].

  34. Babichev, E., Charmousis, C., Lehébel, A.: Asymptotically flat black holes in Horndeski theory and beyond. JCAP 04, 027 (2017). arXiv:1702.01938 [gr-qc].

  35. Babichev, E., Charmousis, C., Lehébel, A.: Black holes and stars in Horndeski theory. Class. Quant. Grav. 33(15), 154002 (2016). arXiv:1604.06402 [gr-qc].

  36. R., A.H.K., Most, E.R., Noronha, J., Witek, H., Yunes, N.: How do spherical black holes grow monopole hair? Phys. Rev. D 105(6), 064041 (2022). arXiv:2201.05178 [gr-qc].

  37. Bernardo, R.C., Chen, C.-Y.: In preparation (2022)

  38. Zhang, Z.: Geometrization of light bending and its application to SdS\(_{w}\) spacetime. Class. Quant. Grav. 39(1), 015003 (2022). arXiv:2112.04149 [gr-qc].

  39. Tattersall, O.J., Ferreira, P.G.: Quasinormal modes of black holes in Horndeski gravity. Phys. Rev. D 97(10), 104047 (2018). arXiv:1804.08950 [gr-qc].

  40. Lagos, M., Ferreira, P.G., Tattersall, O.J.: Anomalous decay rate of quasinormal modes. Phys. Rev. D 101(8), 084018 (2020). arXiv:2002.01897 [gr-qc].

  41. Bernardo, R.C.: Gravitational wave signatures from dark sector interactions. Phys. Rev. D 104(2), 024070 (2021). arXiv:2103.02311 [gr-qc].

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Reginald Christian Bernardo.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


Appendix A: Variation toolkit

We present metric functional variations (\(\delta g^{ab}\)) of relevant quantities that can be used to derive the stress-energy tensor (Eq. (3)) containing the MoND degrees of freedom. The familiar curvature-related ones are

$$\begin{aligned}{} & {} \delta \sqrt{-g} = - \dfrac{1}{2} \sqrt{-g} g_{ab} \delta g^{ab},\end{aligned}$$
$$\begin{aligned}{} & {} \delta \left( \sqrt{-g} R \right) = \sqrt{-g} G_{ab} \delta g^{ab} + \text { boundary term}, \end{aligned}$$


$$\begin{aligned} \begin{aligned} \delta \Gamma ^c_{ab} = - \dfrac{1}{2} \bigg [ g_{da} \nabla _b \left( \delta g^{dc} \right)&+ g_{db} \nabla _a \left( \delta g^{dc} \right) - g_{ai} g_{bj} \nabla ^c \left( \delta g^{ij} \right) \bigg ]. \end{aligned} \end{aligned}$$

On the other hand, variations of the various couplings between the vector and scalar degrees of freedom are given by

$$\begin{aligned}{} & {} \delta \left( F^{ab} F_{ab} \right) = 2 F_a^{\ c} F_{b c} \delta g^{ab}, \end{aligned}$$
$$\begin{aligned}{} & {} \delta \left( \nabla _\alpha A_\nu \right) = A_{(\beta } g_{\gamma ) (\alpha } \nabla _{\nu )} \left( \delta g^{\gamma \beta } \right) - \dfrac{1}{2} g_{\alpha \gamma } g_{\lambda \nu } A^\beta \nabla _\beta \left( \delta g^{\gamma \lambda } \right) , \end{aligned}$$
$$\begin{aligned}{} & {} \begin{aligned} \delta \left( J^a \nabla _a \phi \right)&= \bigg [ \left( \nabla _c \phi \right) A_{(a} \left( \nabla _{b)} A^c \right) + A^c \left( \nabla _c A_{(a} \right) \left( \nabla _{b)} \phi \right) \bigg ] \delta g^{ab} \\&\quad - g_{a(c} \nabla _{d)} \left[ A_b A^c \left( \nabla ^d \phi \right) \right] \delta g^{ab} + \dfrac{1}{2} \nabla _c \left( A^c A_a \left( \nabla _b \phi \right) \right) \delta g^{ab} \\&\quad + \text { boundary terms, e.g., } \nabla _c \left( \cdots \right) , \end{aligned} \end{aligned}$$
$$\begin{aligned}{} & {} \delta {Y} = \left[ \nabla _a \nabla _b \phi + 2 \left( A^c \nabla _c \phi \right) A_{(a} \nabla _{b)} \phi \right] \delta g^{ab}, \end{aligned}$$
$$\begin{aligned}{} & {} \delta {Q} = \left( A_{(a} \nabla _{b)} \phi \right) \delta g^{ab}, \end{aligned}$$


$$\begin{aligned} \delta \left( A_a A^a \right) = A_a A_b \delta g^{ab}. \end{aligned}$$

Appendix B: Explicit field equation terms in isotropic coordinates

The explicit terms appearing in the modified Einstein equation components in isotropic coordinates are

$$\begin{aligned} \begin{aligned} E_{tt}&= e^{-\zeta } (K_B-2) {U}^2 \Phi '' - e^{\nu -\zeta } \zeta '' + \dfrac{e^{-2 \zeta }}{4 r} \bigg [ -2 r e^{2 \zeta +\nu } {F}({Y},{Q}) \\&\quad -8 e^{\zeta +\nu } \zeta '-r e^{\zeta +\nu } \left( \zeta '\right) ^2+2 K_B r e^{\zeta +\nu } \left( \Phi '\right) ^2 -4 r e^{\zeta +\nu } \left( \Phi '\right) ^2 \\&\quad +2 e^{\zeta } K_B r {U}^2 \zeta ' \Phi '-4 e^{\zeta } r {U}^2 \zeta ' \Phi '-2 e^{\zeta } r \lambda \left( e^{\zeta } {U}^2+e^{\nu } \left( e^{\zeta }+{V}^2\right) \right) \\&\quad +8 e^{\zeta } K_B r {U} {U}' \Phi ' -2 e^{\zeta } K_B r \left( {U}'\right) ^2 -16 e^{\zeta } r {U} {U}' \Phi ' \\&\quad +2 K_B e^{\nu } r {V}^2 \zeta ' \Phi '-4 e^{\nu } r {V}^2 \zeta ' \Phi '+2 K_B e^{\nu } r {V}^2 \left( \Phi '\right) ^2-4 e^{\nu } r {V}^2 \left( \Phi '\right) ^2 \\&\quad -4 K_B e^{\nu } r {V} {V}' \Phi ' +8 e^{\nu } r {V} {V}' \Phi '+8 e^{\zeta } K_B {U}^2 \Phi '-16 e^{\zeta } {U}^2 \Phi ' \bigg ], \end{aligned}\nonumber \\ \end{aligned}$$


$$\begin{aligned} \begin{aligned} E_{rr}&= e^{-\zeta } (K_B-2) {V}^2 \Phi '' + \dfrac{1}{4} \bigg [-8 e^{-\zeta } {V}^2 \left( \Phi '\right) ^2 {F}_{{Y}} -4 {V} \Phi ' {F}_{{Q}} \\&\quad -4 \left( \Phi '\right) ^2 {F}_{{Y}} +2 e^{\zeta } {F}({Y},{Q}) +2 \zeta ' \nu '+\left( \zeta '\right) ^2+2 K_B \left( \Phi '\right) ^2 \\&\quad +\frac{4 \zeta '}{r}+\frac{4 \nu '}{r}+\frac{8 e^{-\zeta } K_B {V}^2 \Phi '}{r}-\frac{16 e^{-\zeta } {V}^2 \Phi '}{r} -2 K_B e^{-\nu } {U}^2 \nu ' \Phi ' \\&\quad +4 e^{-\nu } {U}^2 \nu ' \Phi '+\lambda \left( 2 e^{\zeta }-2 {U}^2 e^{\zeta -\nu }-2 {V}^2\right) +2 K_B e^{-\nu } \left( {U}'\right) ^2 \\&\quad +4 e^{-\zeta } K_B {V}^2 \zeta ' \Phi ' -8 e^{-\zeta } {V}^2 \zeta ' \Phi '+2 e^{-\zeta } K_B {V}^2 \nu ' \Phi ' \\&\quad +6 e^{-\zeta } K_B {V}^2 \left( \Phi '\right) ^2 -4 e^{-\zeta } {V}^2 \nu ' \Phi ' -12 e^{-\zeta } {V}^2 \left( \Phi '\right) ^2 \\&\quad -4 e^{-\zeta } K_B {V} {V}' \Phi '+8 e^{-\zeta } {V} {V}' \Phi '-4 \left( \Phi '\right) ^2 \bigg ], \end{aligned}\qquad \end{aligned}$$
$$\begin{aligned} \begin{aligned} E_{tr}&= (K_B-2) {U} {V} \Phi ''-\dfrac{{U}}{2 r} \bigg [{V} \bigg (\Phi ' \bigg (2 r \Phi ' {F}_{{Y}}-4 K_B \\&\quad -(K_B-2) r (\zeta ' + \nu ') -2 (K_B - 2) r \Phi '+8\bigg )+2 e^{\zeta } r \lambda \bigg )+e^{\zeta } r \Phi ' {F}_{{Q}} \bigg ], \end{aligned}\nonumber \\ \end{aligned}$$


$$\begin{aligned} \begin{aligned} E_{\theta \theta }&= \frac{r^2 \zeta ''}{2}+\frac{r^2 \nu ''}{2} + \frac{1}{4} r e^{-\zeta -\nu } \bigg [ 2 r e^{2 \zeta +\nu } {F}({Y},{Q})+2 e^{\zeta +\nu } \zeta '+2 e^{\zeta +\nu } \nu ' \\&\quad -2 (K_B - 2) r e^{\zeta +\nu } \left( \Phi '\right) ^2 +r e^{\zeta +\nu } \left( \nu '\right) ^2 +2 e^{\zeta } (K_B - 2) r {U}^2 \nu ' \Phi ' \\&\quad +2 e^{\zeta } r \lambda \left( e^{\nu } \left( e^{\zeta }+{V}^2\right) -e^{\zeta } {U}^2\right) -2 e^{\zeta } K_B r \left( {U}'\right) ^2 - 2 (K_B - 2) e^{\nu } r {V}^2 \zeta ' \Phi ' \\&\quad -2 (K_B - 2) e^{\nu } r {V}^2 \left( \Phi '\right) ^2 +4 (K_B - 2) e^{\nu } r {V} {V}' \Phi ' \bigg ]. \end{aligned}\nonumber \\ \end{aligned}$$

Appendix C: The curvature scalars in isotropic coordinates

The Ricci \(\mathcal {R}\) and Kretschmann \(\mathcal {K}\) scalars in isotropic coordinates (8) are given by

$$\begin{aligned} \begin{aligned} \mathcal {R}&= -\frac{e^{-\zeta (r)}}{2 r} \bigg ( 2 r \left( 2 \zeta ''(r)+\nu ''(r)\right) + \zeta '(r) \left( r \nu '(r)+8\right) \\&\quad + r \zeta '(r)^2 +r \nu '(r)^2+4 \nu '(r) \bigg ) \end{aligned} \end{aligned}$$


$$\begin{aligned} \begin{aligned} \mathcal {K}&= \frac{e^{-2 \zeta (r)}}{4 r^2} \bigg ( 4 r^2 \left( 2 \zeta ''(r)^2+\nu ''(r)^2\right) +3 \zeta '(r)^2\left( r^2 \nu '(r)^2+8\right) \\&\quad + r^2 \zeta '(r)^4 + r^2 \nu '(r)^4+4 \nu '(r)^2 \left( r^2 \nu ''(r)+2\right) \\&\quad + 8 r \zeta '(r)^3-2 r \zeta '(r) \bigg (-8 \zeta ''(r) \\&\quad +r \nu '(r)^3-4 \nu '(r)^2+2 r \nu '(r) \nu ''(r) \bigg ) \bigg ). \end{aligned} \end{aligned}$$

For a Schwarzschild black hole (Eqs. (25), (26)), these can be shown to be \(\mathcal {R} = 0\) and \(\mathcal {K} = 12 R^2/ \left( r^6 \left( 1 + (R/4r) \right) ^{12} \right) \) as expected.

Appendix D: Constrained vector field solutions

In this appendix, we examine the branch \(\Phi '(r) = 0\) with \(K_B \ne 0\). In this case, the r-component of the vector field equation as well as the tr-component of the metric field equation reduce to \({V}(r) \lambda (r) = 0\), i.e., either the multiplier \(\lambda \) must be zero or that the vector field should be time-pointing. Also, due to the term \(\sim J^a \nabla _a \phi \) in the action, despite having a trivial scalar field, the scalar field equation only becomes an additional nontrivial constraint on the vector field components. Thus, we take \(K_B = 2\); otherwise, the dynamical system becomes over-constrained. We consider separately \(\lambda = 0\) and \({V}(r) = 0\) branches below.

We thread down the \(\lambda = 0\) branch together with \({F}(0, 0) = 0\) (asymptotically flat condition). The metric equation becomes

$$\begin{aligned}{} & {} -e^{\nu } \left( 4 r \zeta ''+r \zeta ^{\prime 2}+8 \zeta '\right) -2 K_B r {U}^{\prime 2} = 0, \end{aligned}$$
$$\begin{aligned}{} & {} 2 \zeta ' \left( r \nu '+2\right) +r \zeta ^{\prime 2}+4 \nu '+2 K_B r e^{-\nu (r)} {U}^{\prime 2} = 0, \end{aligned}$$

while the time component of the vector field equation becomes

$$\begin{aligned} 2 r {U}''+{U}' \left( r \zeta '-r \nu '+4\right) = 0. \end{aligned}$$

In addition, the unit-vector constraint is given by

$$\begin{aligned} e^{\nu } \left( e^{\zeta }+{V}^2\right) =e^{\zeta } {U}^2. \end{aligned}$$

Equations (D16), (D17), (D18), and (D19) can be solved for the four unknowns \(\left( \nu . \zeta , {U}, {V} \right) \). To obtain this general solution, we solve Eq. (D18) for U:

$$\begin{aligned} {U}(r) = c_1 \int ^r \dfrac{ \exp \left( \left( \nu (x)- \zeta (x) \right) /2 \right) }{x^2} \, dx + c_2, \end{aligned}$$

where \(c_1\) and \(c_2\) are integration constants. Substituting Eq. (D20) into (D19) then determines the spatial component of the vector field in terms of the metric functions \(\left( \nu , \zeta \right) \). A coupled system for the metric functions finally emerges by substituting Eq. (D20) into Eqs. (D16) and (D17):

$$\begin{aligned} 2 c_1^2 K_B+4 r^4 e^{\zeta } \zeta ''+r^4 e^{\zeta } \zeta ^{\prime 2}+8 r^3 e^{\zeta } \zeta ' = 0, \end{aligned}$$


$$\begin{aligned} \dfrac{2 c_1^2 K_B e^{-\zeta }}{r^3}+2 \zeta ' \left( r \nu '+2\right) +r \zeta ^{\prime 2}+4 \nu ' = 0. \end{aligned}$$

An exact analytical solution to Eqs. (D21) and (D22) for \(c_1 \ne 0\) cannot be obtained. Nonetheless, it is easy to confirm that for \(c_1 = 0\), \(\nu \) and \(\zeta \) reduces to the Schwarzschild solution (Eqs. (25), (26)). This suggests that a hairy black hole emerges for \(c_1 \ne 0\), in which case \(c_1\) quantifies the departure from the Schwarzschild geometry. Considering \(c_1\) as a perturbation, the leading order corrections to the metric function can be shown to be

$$\begin{aligned} e^{\nu (r)} = \exp \left( \dfrac{c_1^2 r \left( a R^2 (4 r+R)+32 K_B\right) }{(4 r-R) (4 r+R)^2} \right) e^{\nu _\text {Schw}(r)}, \end{aligned}$$


$$\begin{aligned} e^{\zeta (r)} = \exp \left( -\frac{c_1^2 \left( a R^2 (4 r+R)+16 K_B\right) }{4 (4 r+R)^2} \right) e^{\zeta _\text {Schw}(r)}, \end{aligned}$$

where a is an integration constant, and \(\nu _\text {Schw}(r)\) and \(\zeta _\text {Schw}(r)\) are given by Eqs. (25) and (26).

We study the \({V}(r) = 0\) branch with \({F}(0,0)=0\) for asymptotic flatness. The metric equations become

$$\begin{aligned} \begin{aligned}&-e^{\nu } \left( 8 \zeta '+4 r \zeta ''+r \zeta ^{\prime 2}\right) -2 e^{\zeta } \lambda r \left( e^{\nu }+{U}^2\right) -2 K_B r {U}^{\prime 2} = 0, \end{aligned} \end{aligned}$$


$$\begin{aligned} \begin{aligned}&e^{\nu } \left( 4 \nu '+2 \zeta ' \left( r \nu '+2\right) +r \zeta ^{\prime 2}\right) +2 e^{\zeta } \lambda r \left( e^{\nu }-{U}^2\right) +2 K_B r {U}^{\prime 2} = 0. \end{aligned} \end{aligned}$$

The time component of the vector field equation becomes

$$\begin{aligned} K_B \left( 2 r {U}''+{U}' \left( r \zeta '-r \nu '+4\right) \right) -2 e^{\zeta } \lambda r {U} = 0, \end{aligned}$$

while the unit-vector constraint reduces to

$$\begin{aligned} e^{\nu }={U}^2. \end{aligned}$$

The last two equations (Eqs. (D27), (D28)) can be used to determine U and the multiplier \(\lambda \) in terms of the metric functions. Substituting these expressions into Eqs. (D25) and (D26) leads to

$$\begin{aligned} 8 \nu '+4 r \left( \zeta ''+\nu ''\right) +2 \zeta ' \left( r \nu '+4\right) +r \zeta ^{\prime 2}+r \nu ^{\prime 2}=0, \end{aligned}$$


$$\begin{aligned} \left( \zeta '+\nu '\right) \left( r \zeta '+r \nu '+4\right) =0. \end{aligned}$$

There are two branches of solution here. The first one is

$$\begin{aligned} e^{\zeta (r)} = \dfrac{e^{-\nu (r)}}{r^4}, \end{aligned}$$

while the second is

$$\begin{aligned} e^{\zeta (r)} = e^{-\nu (r)}, \end{aligned}$$

where either \(\nu \) or \(\zeta \) can be chosen as a free function. The first one was presented in the main text (Eq. (22)). Neither corresponds to a black hole solution.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernardo, R.C., Chen, CY. Dressed black holes in the new tensor–vector–scalar theory. Gen Relativ Gravit 55, 23 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: