Skip to main content
Log in

Equivalence between two charged black holes in dynamics of orbits outside the event horizons

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Using the Fermi–Dirac distribution function, Balart and Vagenas gave a charged spherically symmetric regular black hole, which is a solution of Einstein field equations coupled to a nonlinear electrodynamics. In fact, the regular black hole is a Reissner–Nordström (RN) black hole when a metric function is given a Taylor expansion to first order approximations. It does not have a curvature singularity at the origin, but the RN black hole does. Both black hole metrics have horizons and similar asymptotic behaviors, and satisfy the weak energy conditions everywhere. They are almost the same in photon effective potentials, photon circular orbits and photon spheres outside the event horizons. Due to the approximately same photon spheres, the two black holes have no explicit differences in the black hole shadows and constraints of the black hole charges based on the First Image of Sagittarius A\(^{*}\). There are relatively minor differences between effective potentials, stable circular orbits and innermost stable circular orbits of charged particles outside the event horizons of the two black holes immersed in external magnetic fields. Although the two magnetized black holes allow different construction methods of explicit symplectic integrators, they exhibit approximately consistent results in the regular and chaotic dynamics of charged particles outside the event horizons. Chaos gets strong as the magnetic field parameter or the magnitude of negative Coulomb parameter increases, but becomes weak when the black hole charge or the positive Coulomb parameter increases. A variation of dynamical properties is not sensitive dependence on an appropriate increase of the black hole charge. The basic equivalence between the two black hole gravitational systems in the dynamics of orbits outside the event horizons is due to the two metric functions having an extremely small difference. This implies that the RN black hole is reasonably replaced by the regular black hole without curvature singularity in many situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

Notes

  1. The inclusion of asymptotically uniform external electromagnetic field makes the system (6) be axially symmetric, whereas it still causes the spacetime (1) to be spherically symmetric because such an electromagnetic field does not exert any influence on the spacetime geometry.

References

  1. John, L.M., Moffat, W., Nicolini, P.: Phys. Lett. B 695, 397 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  2. Moffat, J.W.: Phys. Rev. D 56, 6264 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  3. Deng, X.-M.: Eur. Phys. J. C 80(6), 489 (2020)

    Article  ADS  Google Scholar 

  4. Gao, B., Deng, X.-M.: Eur. Phys. J. C 81(11), 983 (2021)

    Article  ADS  Google Scholar 

  5. Lu, X., Xie, Y.: Eur. Phys. J. C 81, 627 (2021)

    Article  ADS  Google Scholar 

  6. Clifton, T., Ferreira, P.F., Padilla, A., Skordis, C.: Phys. Rep. 513, 1 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  7. Deng, X.-M.: Eur. Phys. J. C 80(6), 489 (2020)

    Article  ADS  Google Scholar 

  8. Zhou, T.-Y., Xie, Y.: Eur. Phys. J. C 80, 1070 (2020)

    Article  ADS  Google Scholar 

  9. Bardeen, J.M.: Proceedings of International Conference GR5. Tiflis, U.S.S.R. (1968)

  10. Ayón-Beato, E., García, A.: Phys. Rev. Lett. 80, 5056 (1998)

    Article  ADS  Google Scholar 

  11. Moffat, J.W.: Eur. Phys. J. C 75, 175 (2015)

    Article  ADS  Google Scholar 

  12. Bronnikov, K.A.: Phys. Rev. D 63, 044005 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  13. Balart, L., Vagenas, E.C.: Phys. Rev. D 90, 124045 (2014)

    Article  ADS  Google Scholar 

  14. Ayón-Beato, E., García, A.: Gen. Relativ. Gravit. 37, 635 (2005)

    Article  ADS  Google Scholar 

  15. Dymnikova, I.: Class. Quant. Gravit. 21, 4417 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  16. Lu, X., Xie, Y.: Eur. Phys. J. C 80, 625 (2020)

    Article  ADS  Google Scholar 

  17. Ayón-Beato, E., García, A.: Phys. Lett. B 464, 25 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  18. Ayón-Beato, E., García, A.: Gen. Relativ. Gravit. 31, 629 (1999)

    Article  ADS  Google Scholar 

  19. Ayón-Beato, E., García, A.: Phys. Lett. B 493, 149 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  20. Hayward, S.A.: Phys. Rev. Lett. 96, 031103 (2006)

    Article  ADS  Google Scholar 

  21. Balart, L., Vagenas, E.C.: Phys. Lett. B 730, 14 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  22. Nicolini, P., Smailagic, A., Spallucci, E.: Phys. Lett. B 632, 547 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  23. Ansoldi, S., Nicolini, P., Smailagic, A., Spallucci, E.: Phys. Lett. B 645, 261 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  24. Dymnikova, I.: Gen. Relativ. Gravit. 24, 235 (1992)

    Article  ADS  Google Scholar 

  25. Dymnikovaa, I., Galaktionov, E.: Class. Quant. Gravit. 32, 165015 (2015)

    Article  ADS  Google Scholar 

  26. Jawad, A., Ali, F., Jamil, M., Debnath, U.: Commun. Theor. Phys. 66, 509 (2016)

    Article  ADS  Google Scholar 

  27. Hussain, S., Jamil, M.: Phys. Rev. D 92, 043008 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  28. Azreg-Aïnou, M., Haroon, S., Jamil, M.: Int. J. Mod. Phys. D 28, 1950063 (2019)

    Article  ADS  Google Scholar 

  29. Azreg-Aïnou, M., Chen, Z., Deng, B., Jamil, M., Zhu, T., Wu, Q., Lim, Y.-K.: Phys. Rev. D 102, 044028 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  30. Hussain, S., Hussain, I., Jamil, M.: Eur. Phys. J. C 74, 3210 (2014)

    Article  Google Scholar 

  31. Akiyama, K., et al.: Event horizon telescope collaboration. Astrophys. J. Lett. 930, L12 (2022)

    ADS  Google Scholar 

  32. Wang, Y., Sun, W., Liu, F., Wu, X.: Astrophys. J. 909, 22 (2021)

    Article  ADS  Google Scholar 

  33. Wu, X., Wang, Y., Sun, W., Liu, F.: Astrophys. J. 914, 63 (2021)

    Article  ADS  Google Scholar 

  34. Kopáček, O., Karas, V.: Astrophys. J. 787, 117 (2014)

    Article  ADS  Google Scholar 

  35. Yoshida, H.: Phys. Lett. A 150, 262 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  36. Blanes, S., Moan, P.C.: J. Comput. Appl. Math. 142, 313 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  37. Zhou, N., Zhang, H., Liu, W., Wu, X.: Astrophys. J. 927, 160 (2022)

    Article  ADS  Google Scholar 

  38. Wu, X., Huang, T.-Y.: Phys. Lett. A 313, 77 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  39. Wu, X., Huang, T.-Y., Zhang, H.: Phys. Rev. D 74, 083001 (2000)

    Article  ADS  Google Scholar 

  40. Froeschlé, C., Lega, E.: Celest. Mech. Dyn. Astron. 78, 167 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to two referees for useful suggestions. This research was supported by the National Natural Science Foundation of China (Grant No. 11973020) and the National Natural Science Foundation of Guangxi (No. 2019JJD110006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhou, N., Liu, W. et al. Equivalence between two charged black holes in dynamics of orbits outside the event horizons. Gen Relativ Gravit 54, 110 (2022). https://doi.org/10.1007/s10714-022-02998-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-022-02998-1

Keywords

Navigation