Skip to main content

The nature of cosmological metric perturbations in presence of gravitational particle production

Abstract

The present paper tries to answer the question: Can a de Sitter phase in presence of radiation be a competitor of the standard inflationary paradigm for the early universe? This kind of a de Sitter phase can exist in cosmological models where gravitational particle production takes place. To address the issue the metric perturbations in the de Sitter phase in presence of radiation must be known. The evolution of metric perturbations are explicitly calculated in the paper. It is seen that the evolution of scalar and vector perturbations are considerably different from standard inflationary models. These differences arise due to the particle production mechanism. The scalar perturbation power spectrum grows exponentially at small length scales. However, one cannot uniquely specify the scale at which this exponential growth starts because of the dependence of the power spectrum on the initial perturbation value. The time slice on which the initial perturbation starts is arbitrary. The arbitrariness of the initial time slice is related to the problem of setting the initial condition on the perturbations in the present model. The paper briefly opines on vector and tensor perturbations in the de Sitter space filled with radiation. It is seen that quantization of the perturbation modes in the present model is considerably difficult. One has to modify the present model to provide a consistent scheme of quantization of the perturbation modes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. In this limit we must also have \(k^2 > {{\mathcal {H}}}^\prime \) as \({{\mathcal {H}}}^\prime = (1- \epsilon ){{\mathcal {H}}}^2\) and \(\epsilon \ll 1\).

References

  1. Berera, A.: Phys. Rev. Lett. 75, 3218–3221 (1995). https://doi.org/10.1103/PhysRevLett.75.3218. [arXiv:astro-ph/9509049 [astro-ph]]

    ADS  Article  Google Scholar 

  2. Hall, L.M., Moss, I.G., Berera, A.: Phys. Rev. D 69, 083525 (2004). https://doi.org/10.1103/PhysRevD.69.083525. [arXiv:astro-ph/0305015 [astro-ph]]

    ADS  Article  Google Scholar 

  3. Matsuda, T.: JCAP 06, 002 (2009). https://doi.org/10.1088/1475-7516/2009/06/002. [arXiv:0905.0308 [astro-ph.CO]]

    ADS  Article  Google Scholar 

  4. Visinelli, L.: JCAP 01, 005 (2015). https://doi.org/10.1088/1475-7516/2015/01/005. [arXiv:1410.1187 [astro-ph.CO]]

    ADS  MathSciNet  Article  Google Scholar 

  5. Parker, L.: Phys. Rev. 183, 1057–1068 (1969). https://doi.org/10.1103/PhysRev.183.1057. ([6])

    ADS  Article  Google Scholar 

  6. Ford, L.H.: Phys. Rev. D 35, 2955 (1987). https://doi.org/10.1103/PhysRevD.35.2955

    ADS  Article  Google Scholar 

  7. Lima, J.A.S., Basilakos, S., Costa, F.E.M.: Phys. Rev. D 86, 103534 (2012). https://doi.org/10.1103/PhysRevD.86.103534. [arXiv:1205.0868 [astro-ph.CO]]

    ADS  Article  Google Scholar 

  8. Gunzig, E., Maartens, R., Nesteruk, A.V.: Class. Quant. Grav. 15, 923–932 (1998). https://doi.org/10.1088/0264-9381/15/4/014. [arXiv:astro-ph/9703137 [astro-ph]]

    ADS  Article  Google Scholar 

  9. Abramo, L., Lima, J.: Class. Quant. Grav. 13, 2953–2964 (1996). https://doi.org/10.1088/0264-9381/13/11/011. [arXiv:gr-qc/9606064 [gr-qc]]

    ADS  Article  Google Scholar 

  10. Prigogine, I., Geheniau, J., Gunzig, E., Nardone, P.: Gen. Rel. Grav. 21, 767–776 (1989). https://doi.org/10.1007/BF00758981

    ADS  Article  Google Scholar 

  11. Alcaniz, J.S., Lima, J.A.S.: Astron. Astrophys. 349, 729–734 (1999). [arXiv:astro-ph/9906410 [astro-ph]]

    ADS  Google Scholar 

  12. Wichoski, U.F., Lima, J.A.S.: Phys. Lett. A 262, 103–109 (1999). https://doi.org/10.1016/S0375-9601(99)00681-7. [arXiv:astro-ph/9708215 [astro-ph]]

    ADS  Article  Google Scholar 

  13. Pan, S., Barrow, J.D., Paliathanasis, A.: Eur. Phys. J. C 79(2), 115 (2019). https://doi.org/10.1140/epjc/s10052-019-6627-5. [arXiv:1812.05493 [gr-qc]]

    ADS  Article  Google Scholar 

  14. Paliathanasis, A., Barrow, J.D., Pan, S.: Phys. Rev. D 95(10), 103516 (2017). https://doi.org/10.1103/PhysRevD.95.103516. [arXiv:1610.02893 [gr-qc]]

    ADS  MathSciNet  Article  Google Scholar 

  15. Lima, J.A.S., Baranov, I.: Phys. Rev. D 90(4), 043515 (2014). https://doi.org/10.1103/PhysRevD.90.043515. [arXiv:1411.6589 [gr-qc]]

    ADS  Article  Google Scholar 

  16. Baranov, I.P.R., Jesus, J.F., Lima, J.A.S.: Gen. Rel. Grav. 51(2), 33 (2019). https://doi.org/10.1007/s10714-019-2516-3. [arXiv:1605.04857 [astro-ph.CO]]

    ADS  Article  Google Scholar 

  17. Lima, J.A.S., Santos, R.C., Cunha, J.V.: JCAP 03, 027 (2016). https://doi.org/10.1088/1475-7516/2016/03/027. [arXiv:1508.07263 [gr-qc]]

    ADS  Article  Google Scholar 

  18. Steigman, G., Santos, R.C., Lima, J.A.S.: JCAP 06, 033 (2009). https://doi.org/10.1088/1475-7516/2009/06/033. [arXiv:0812.3912 [astro-ph]]

    ADS  Article  Google Scholar 

  19. Guth, A.H.: Adv. Ser. Astrophys. Cosmol. 3, 139–148 (1987). https://doi.org/10.1103/PhysRevD.23.347

    Article  Google Scholar 

  20. Kolb, E.W.: Phys. Rept. 227, 5–12 (1993). https://doi.org/10.1016/0370-1573(93)90052-F

    ADS  Article  Google Scholar 

  21. Linde, A.D.: Phys. Lett. B 129, 177–181 (1983). https://doi.org/10.1016/0370-2693(83)90837-7

    ADS  Article  Google Scholar 

  22. Zimdahl, W., Pavon, D., Jou, D.: Class. Quant. Grav. 10, 1775–1789 (1993). https://doi.org/10.1088/0264-9381/10/9/019

    ADS  Article  Google Scholar 

  23. Calvao, M.O., Lima, J.A.S., Waga, I.: Phys. Lett. A 162, 223 (1992). https://doi.org/10.1016/0375-9601(92)90437-Q

    ADS  Article  Google Scholar 

  24. Pan, S., de Haro, J., Paliathanasis, A., Slagter, R.J.: Mon. Not. Roy. Astron. Soc. 460(2), 1445 (2016). https://doi.org/10.1093/mnras/stw1034. [arXiv:1601.03955 [gr-qc]]

    ADS  Article  Google Scholar 

  25. Lima, J.A.S., Germano, A.S.M., Abramo, L.R.W.: Phys. Rev. D 53, 4287 (1996). https://doi.org/10.1103/PhysRevD.53.4287. [arXiv:gr-qc/9511006]

    ADS  Article  Google Scholar 

  26. Weinberg, S.: Astrophys. J. 168, 175 (1971). https://doi.org/10.1086/151073

    ADS  Article  Google Scholar 

  27. Chakraborty, S., Pan, S., Saha, S.: Phys. Lett. B 738, 424–427 (2014). https://doi.org/10.1016/j.physletb.2014.10.009. [arXiv:1411.0941 [gr-qc]]

    ADS  Article  Google Scholar 

  28. Mukhanov, V.F., Feldman, H.A., Brandenberger, R.H.: Phys. Rept. 215, 203 (1992). https://doi.org/10.1016/0370-1573(92)90044-Z

    ADS  Article  Google Scholar 

  29. Domènech, G.: Universe 7(11), 398 (2021). https://doi.org/10.3390/universe7110398. [arXiv:2109.01398 [gr-qc]]

    ADS  Article  Google Scholar 

  30. Carroll, S.M., Hoffman, M., Trodden, M.: Phys. Rev. D 68, 023509 (2003). https://doi.org/10.1103/PhysRevD.68.023509. [arXiv:astro-ph/0301273 [astro-ph]]

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Bhattacharya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix I

In an expanding universe the energy density naturally decreases with time. In presence of particle production the decrement in energy density, with time, slows down (compared to the corresponding rate in standard cosmological models) due to the production of new particles which contributes to the energy density. This decrement in the rate of energy density, in models with particle production, can be explained if we take into account the action of the creation pressure \(P_c\). To understand this point we must note that the effective pressure of the system is the sum of the fluid pressure and the creation pressure,

$$\begin{aligned} P_T=P+P_c\,, \end{aligned}$$

where \(P=\omega \rho \) is the fluid pressure. The total pressure appears in the total energy momentum tensor appearing in Eq. (6). As total energy momentum tensor is conserved, we must have

$$\begin{aligned} \frac{d(\rho \Delta V)}{dt}=-P_T\frac{d(\Delta V)}{dt}\,. \end{aligned}$$

Assuming \(d(\Delta V)/dt>0\) for an expanding universe, we can decrease the time rate of change of the energy (compared to standard cosmological models where there is no particle production and \(P_T=P\)) by making \(P_T<P\). For positive values of \(P_T\) and P one can get \(P_T<P\) when the creation pressure \(P_c\) is negative. As because by introducing the negative creation pressure we can decrease the rate of decrement of the of energy (compared to the case where no particles are created) we do not again require to alter the energy density. This is the reason why we do not alter the energy density for the cosmological scenarios where there is particle production.

Appendix II

Assuming \({\bar{T}},{\bar{n}}\) to be the basic thermodynamic variables we have \({\bar{\rho }}={\bar{\rho }}({\bar{n}},{\bar{T}})\). As a consequence

$$\begin{aligned} \dot{{\bar{\rho }}}=\left( \frac{\partial {\bar{\rho }}}{\partial {\bar{n}}}\right) _T \dot{{\bar{n}}} + \left( \frac{\partial {\bar{\rho }}}{\partial {\bar{T}}}\right) _n \dot{{\bar{T}}}\,. \end{aligned}$$

Using the above relation in \(\dot{{\bar{\rho }}}+3H({\bar{\rho }}+{\bar{P}})={\Gamma }({\bar{\rho }}+{\bar{P}})\), which comes from Eq. (13), one gets

$$\begin{aligned} \left( \frac{\partial {\bar{\rho }}}{\partial {\bar{n}}}\right) _T \dot{{\bar{n}}} + \left( \frac{\partial {\bar{\rho }}}{\partial {\bar{T}}}\right) _n \dot{{\bar{T}}}=-3H({\bar{\rho }} + {\bar{P}}) - 3H{\bar{P}}_c\,. \end{aligned}$$

Using the relation of \(\dot{{\bar{n}}}/{\bar{n}}=\Gamma -3H\), the above equation can also be written as

$$\begin{aligned} \left( \frac{\partial {\bar{\rho }}}{\partial {\bar{T}}}\right) _n \dot{{\bar{T}}}=-3H({\bar{\rho }} + {\bar{P}}) - 3H{\bar{P}}_c -\left( \frac{\partial {\bar{\rho }}}{\partial {\bar{n}}}\right) _T({\bar{n}}{\bar{\Gamma }}-3H{\bar{n}})\,. \end{aligned}$$

The above equation can also be written as:

$$\begin{aligned} \dot{{\bar{T}}} = -\frac{1}{({\partial {\bar{\rho }}}/{\partial {\bar{T}}})_n}\left\{ \left[ ({\bar{\rho }} + {\bar{P}})-{\bar{n}}\left( \frac{\partial {\bar{\rho }}}{\partial {\bar{n}}}\right) _T \right] 3H + 3H{\bar{P}}_c + \left( \frac{\partial {\bar{\rho }}}{\partial {\bar{n}}}\right) _T {\bar{n}}{\Gamma } \right\} \,. \qquad \end{aligned}$$
(72)

To proceed further we have to spend some time on thermodynamic relations. From Eq. (12) (for the background cosmological model) we can write

$$\begin{aligned} d{\bar{s}} = \frac{1}{{\bar{n}}{\bar{T}}}\left[ d{\bar{\rho }} - \left( \frac{{\bar{\rho }} + {\bar{P}}}{{\bar{n}}}\right) d{\bar{n}}\right] \,, \end{aligned}$$

which gives,

$$\begin{aligned} \left( \frac{\partial {\bar{s}}}{\partial {\bar{n}}}\right) _T= & {} \frac{1}{{\bar{n}}{\bar{T}}}\left[ \left( \frac{\partial {\bar{\rho }}}{\partial {\bar{n}}}\right) _T - \left( \frac{{\bar{\rho }} + {\bar{P}}}{{\bar{n}}}\right) \right] \,, \end{aligned}$$
(73)
$$\begin{aligned} \left( \frac{\partial {\bar{s}}}{\partial {\bar{T}}}\right) _n= & {} \frac{1}{{\bar{n}}{\bar{T}}} \left( \frac{\partial {\bar{\rho }}}{\partial {\bar{T}}}\right) _n\,. \end{aligned}$$
(74)

For partial derivatives we know

$$\begin{aligned} \frac{\partial }{ \partial {\bar{T}}}\left\{ \left( \frac{\partial {\bar{s}}}{\partial {\bar{n}}}\right) _T\right\} _n =\frac{\partial }{ \partial {\bar{n}}}\left\{ \left( \frac{\partial {\bar{s}}}{\partial {\bar{T}}}\right) _n\right\} _T\,, \end{aligned}$$

which gives

$$\begin{aligned} \frac{\partial }{ \partial {\bar{T}}}\left\{ \frac{1}{{\bar{n}}{\bar{T}}}\left[ \left( \frac{\partial {\bar{\rho }}}{\partial {\bar{n}}}\right) _T - \left( \frac{{\bar{\rho }} + {\bar{P}}}{{\bar{n}}}\right) \right] \right\} _n =\frac{\partial }{\partial {\bar{n}}}\left\{ \frac{1}{{\bar{n}}{\bar{T}}} \left( \frac{\partial {\bar{\rho }}}{\partial {\bar{T}}}\right) _n \right\} _T\,. \end{aligned}$$

Calculating the derivatives in both sides and cancelling appropriate terms the above equation yields [26]

$$\begin{aligned} {\bar{T}}\left( \frac{\partial {\bar{P}}}{\partial {\bar{T}}}\right) _n=({\bar{\rho }} + {\bar{P}}) -{\bar{n}}\left( \frac{\partial {\bar{\rho }}}{\partial {\bar{n}}}\right) _T\,. \end{aligned}$$
(75)

Using this relation in Eq. (72) we get

$$\begin{aligned} \dot{{\bar{T}}} = -\frac{1}{({\partial {\bar{\rho }}}/{\partial {\bar{T}}})_n}\left\{ 3H{\bar{T}}\left( \frac{\partial {\bar{P}}}{\partial {\bar{T}}}\right) _n + 3H{\bar{P}}_c + \left( \frac{\partial {\bar{\rho }}}{\partial {\bar{n}}}\right) _T {\bar{n}}{\Gamma } \right\} \,, \end{aligned}$$

which can also be written as

$$\begin{aligned} \frac{\dot{{\bar{T}}}}{{\bar{T}}}=-3H \left( \frac{\partial {\bar{P}}}{\partial {\bar{\rho }}}\right) _n -\frac{3H{\bar{P}}_c + ({\partial {\bar{\rho }}}/{\partial {\bar{n}}})_T \,\,{\bar{n}}{\Gamma }}{{\bar{T}}({\partial {\bar{\rho }}}/{\partial {\bar{T}}})_n}\,, \end{aligned}$$
(76)

where we have used

$$\begin{aligned} \frac{({\partial {\bar{P}}}/{\partial {\bar{T}}})_n}{({\partial {\bar{\rho }}}/{\partial {\bar{T}}})_n}=\left( \frac{\partial {\bar{P}}}{\partial {\bar{\rho }}}\right) _n\,. \end{aligned}$$

If specific entropy is conserved then the expression of \({\bar{P}}_c\) is given as in Eq. (14) and we know the expression of \({\bar{n}}({\partial {\bar{\rho }}}/{\partial {\bar{n}}})_T\) from Eq. (75). Using these expressions we can write

$$\begin{aligned} 3H{\bar{P}}_c + {\bar{n}}\left( \frac{\partial {\bar{\rho }}}{\partial {\bar{n}}}\right) _T {\Gamma } = -{\Gamma }({\bar{\rho }} + {\bar{P}}) +\left[ ({\bar{\rho }} + {\bar{P}}) -{\bar{T}}\left( \frac{\partial {\bar{P}}}{\partial {\bar{T}}}\right) _n\right] \Gamma =-{\bar{T}}\,\,{\Gamma }\left( \frac{\partial {\bar{P}}}{\partial {\bar{T}}}\right) _n\,. \end{aligned}$$

Using this result in Eq. (76) for cosmological evolution conserving specific entropy we get

$$\begin{aligned} \frac{\dot{{\bar{T}}}}{{\bar{T}}}=-3H \left( \frac{\partial {\bar{P}}}{\partial {\bar{\rho }}} \right) _n + {\Gamma } \left( \frac{\partial {\bar{P}}}{\partial {\bar{\rho }}}\right) _n\,, \end{aligned}$$

and using the expression of \({\dot{n}}/n\) the above equation becomes

$$\begin{aligned} \frac{\dot{{\bar{T}}}}{{\bar{T}}}=\left( \frac{\partial {\bar{P}}}{\partial {\bar{\rho }}}\right) _n \frac{\dot{{\bar{n}}}}{{\bar{n}}}\,. \end{aligned}$$
(77)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, K., Chatterjee, A. & Hussain, S. The nature of cosmological metric perturbations in presence of gravitational particle production. Gen Relativ Gravit 54, 84 (2022). https://doi.org/10.1007/s10714-022-02970-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-022-02970-z

Keywords

  • de Sitter spcae
  • Cosmological perturbations
  • Particle production