Skip to main content

Entanglement harvesting of three Unruh-DeWitt detectors

Abstract

We analyze a tripartite entanglement harvesting protocol with three Unruh-DeWitt detectors adiabatically interacting with a quantum scalar field in \((3+1)\)-dimensional Minkowski spacetime. We consider linear, equilateral triangular, and scalene triangular configurations for the detectors, all of which remain static. We find that, under the same parameters, more entanglement can be extracted in the linear configuration than the equilateral one, consistent with single instantaneous switching results. No bipartite entanglement is required to harvest tripartite entanglement. Furthermore, we find that tripartite entanglement can be harvested even if one detector is at larger spacelike separations from the other two than in the corresponding bipartite case. We also find that for small detector separations bipartite correlations become larger than tripartite ones, leading to an apparent violation of the Coffman-Kundu-Wootters (CKW) inequality. We show that this is not a consequence of our perturbative expansion but that it instead occurs because the harvesting qubits are in a mixed state.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. The definition of negativity used in [92] does not include the overall factor of \(\frac{1}{2}\). However, we include it to keep consistent with the definition used in [93].

References

  1. Ralph, T.C., Milburn, G.J., Downes, T.: Phys. Rev. A 79, 022121 (2009). https://doi.org/10.1103/PhysRevA.79.022121

    ADS  Article  Google Scholar 

  2. Peres, A., Terno, D.R.: Rev. Mod. Phys. 76, 93 (2004). https://doi.org/10.1103/RevModPhys.76.93

    ADS  Article  Google Scholar 

  3. Lamata, L., Martin-Delgado, M.A., Solano, E.: Phys. Rev. Lett. 97, 250502 (2006). https://doi.org/10.1103/PhysRevLett.97.250502

    ADS  Article  Google Scholar 

  4. Hotta, M.: J. Phys. Soc. Jpn. 78, 034001 (2009). https://doi.org/10.1143/JPSJ.78.034001

    ADS  Article  Google Scholar 

  5. Hotta, M.: arXiv preprint arXiv:1101.3954 (2011)

  6. Ryu, S., Takayanagi, T.: Phys. Rev. Lett. 96, 181602 (2006). https://doi.org/10.1103/PhysRevLett.96.181602. arXiv:hep-th/0603001

    ADS  MathSciNet  Article  Google Scholar 

  7. Solodukhin, S.N.: Living Rev. Relativ. 14, 8 (2011). https://doi.org/10.12942/lrr-2011-8. arXiv:1104.3712 [hep-th]

    ADS  Article  Google Scholar 

  8. Brustein, R., Einhorn, M.B., Yarom, A.: JHEP 01, 098 (2006). https://doi.org/10.1088/1126-6708/2006/01/098. arXiv:hep-th/0508217

    ADS  Article  Google Scholar 

  9. Preskill, J.: In: International Symposium on Black holes, Membranes, Wormholes and Superstrings Woodlands, Texas, January 16-18, 1992 pp. 22–39 (1992). arXiv:hep-th/9209058 [hep-th]

  10. Mathur, S.D.: Class. Quant. Grav. 26, 224001 (2009). https://doi.org/10.1088/0264-9381/26/22/224001. arXiv:0909.1038 [hep-th]

    ADS  Article  Google Scholar 

  11. Almheiri, A., Marolf, D., Polchinski, J., Sully, J.: J. High Energy Phys. 2013, 62 (2013). https://doi.org/10.1007/JHEP02(2013)062

    Article  Google Scholar 

  12. Braunstein, S.L., Pirandola, S., Zyczkowski, K.: Phys. Rev. Lett. 110, 101301 (2013). https://doi.org/10.1103/PhysRevLett.110.101301. arXiv:0907.1190 [quant-ph]

    ADS  Article  Google Scholar 

  13. Mann, R.B.: Black Holes: Thermodynamics, Information, and Firewalls, SpringerBriefs in Physics, Springer (2015) https://doi.org/10.1007/978-3-319-14496-2

  14. Louko, J.: J. High Energ. Phys. 2014, 142 (2014). https://doi.org/10.1007/JHEP09(2014)142

    Article  Google Scholar 

  15. Luo, S., Stoltenberg, H., Albrecht, A.: Phys. Rev. D 95, 064039 (2017). https://doi.org/10.1103/PhysRevD.95.064039

    ADS  Article  Google Scholar 

  16. Joshi, P.S., Padmanabhan, T., Chitre, S.M.: Phys. Lett. A 120, 115 (1987). https://doi.org/10.1016/0375-9601(87)90709-2

    ADS  Article  Google Scholar 

  17. Padmanabhan, T.: Class. Quant. Grav. 22, L107 (2005). https://doi.org/10.1088/0264-9381/22/17/L01. arXiv:hep-th/0406060

    ADS  Article  Google Scholar 

  18. Padmanabhan, T.: Phys. Rept. 380, 235 (2003). https://doi.org/10.1016/S0370-1573(03)00120-0. arXiv:hep-th/0212290

    ADS  Article  Google Scholar 

  19. Padmanabhan, T.: Gen. Rel. Grav. 38, 1547 (2006). https://doi.org/10.1007/s10714-006-0338-6

    ADS  Article  Google Scholar 

  20. Padmanabhan, T.: Int. J. Mod. Phys. D 15, 2029 (2006). https://doi.org/10.1142/S0218271806009455. arXiv:gr-qc/0609012

    ADS  MathSciNet  Article  Google Scholar 

  21. Sriramkumar, L., Padmanabhan, T.: Int. J. Mod. Phys. D 11, 1 (2002). https://doi.org/10.1142/S0218271802001354. arXiv:gr-qc/9903054

    ADS  Article  Google Scholar 

  22. Lochan, K., Chakraborty, S., Padmanabhan, T.: Eur. Phys. J. C 78, 433 (2018). https://doi.org/10.1140/epjc/s10052-018-5911-0. arXiv:1603.01964 [gr-qc]

    ADS  Article  Google Scholar 

  23. Sriramkumar, L., Padmanabhan, T.: Class. Quant. Grav. 13, 2061 (1996). https://doi.org/10.1088/0264-9381/13/8/005. arXiv:gr-qc/9408037

    ADS  Article  Google Scholar 

  24. Valentini, A.: Phys. Lett. A 153, 321 (1991). https://doi.org/10.1016/0375-9601(91)90952-5

    ADS  Article  Google Scholar 

  25. Reznik, B.: Found. Phys. 33, 167 (2003). https://doi.org/10.1023/A:1022875910744

    MathSciNet  Article  Google Scholar 

  26. Reznik, B., Retzker, A., Silman, J.: Phys. Rev. A 71, 042104 (2005). https://doi.org/10.1103/PhysRevA.71.042104

    ADS  MathSciNet  Article  Google Scholar 

  27. Steeg, G.V., Menicucci, N.C.: Phys. Rev. D 79, 044027 (2009). https://doi.org/10.1103/PhysRevD.79.044027

    ADS  Article  Google Scholar 

  28. Pozas-Kerstjens, A., Martín-Martínez, E.: Phys. Rev. D 92, 064042 (2015). https://doi.org/10.1103/PhysRevD.92.064042

    ADS  Article  Google Scholar 

  29. Martín-Martínez, E., Smith, A.R.H., Terno, D.R.: Phys. Rev. D 93, 044001 (2016). https://doi.org/10.1103/PhysRevD.93.044001

    ADS  MathSciNet  Article  Google Scholar 

  30. Martín-Martínez, E., Sanders, B.C.: New J. Phys. 18, 043031 (2016). https://doi.org/10.1088/1367-2630/18/4/043031

    ADS  Article  Google Scholar 

  31. Kukita, S., Nambu, Y.: Entropy 19, 449 (2017). https://doi.org/10.3390/e19090449

    Article  Google Scholar 

  32. Simidzija, P., Martín-Martínez, E.: Phys. Rev. D 96, 065008 (2017). https://doi.org/10.1103/PhysRevD.96.065008

    ADS  MathSciNet  Article  Google Scholar 

  33. Simidzija, P., Jonsson, R.H., Martín-Martínez, E.: Phys. Rev. D 97, 125002 (2018). https://doi.org/10.1103/PhysRevD.97.125002

    ADS  MathSciNet  Article  Google Scholar 

  34. Henderson, L.J., Hennigar, R.A., Mann, R.B., Smith, A.R.H., Zhang, J.: Class. Quant. Grav. 35, 21LT02 (2018). https://doi.org/10.1088/1361-6382/aae27e

    Article  Google Scholar 

  35. Ng, K.K., Mann, R.B., Martín-Martínez, E.: Phys. Rev. D 98, 125005 (2018). https://doi.org/10.1103/PhysRevD.98.125005

    ADS  MathSciNet  Article  Google Scholar 

  36. Henderson, L.J., Hennigar, R.A., Mann, R.B., Smith, A.R., Zhang, J.: J. High Energ. Phys. 2019, 178 (2019). https://doi.org/10.1007/JHEP05(2019)178

    Article  Google Scholar 

  37. Cong, W., Tjoa, E., Mann, R.B.: J. High Energ. Phys 2019, 21 (2019). https://doi.org/10.1007/JHEP06(2019)021

    Article  Google Scholar 

  38. Tjoa, E., Mann, R.B.: J. High Energy Phys. 2020, 1 (2020). https://doi.org/10.1007/JHEP08(2020)155

    Article  Google Scholar 

  39. Cong, W., Qian, C., Good, M.R., Mann, R.B.: J. High Energy Phys. 2020, 67 (2020). https://doi.org/10.1007/JHEP10(2020)067

    Article  Google Scholar 

  40. Xu, Q., Ahmad, S.A., Smith, A.R.H.: (2020), Arxiv:2006.11301v1

  41. Zhang, J., Yu, H.: Phys. Rev. D 102, 065013 (2020). https://doi.org/10.1103/PhysRevD.102.065013. arXiv:2008.07980 [quant-ph]

    ADS  MathSciNet  Article  Google Scholar 

  42. Liu, Z., Zhang, J., Yu, H.: JHEP 08, 020 (2021). https://doi.org/10.1007/JHEP08(2021)020. arXiv:2101.00114 [quant-ph]

    ADS  Article  Google Scholar 

  43. Liu, Z., Zhang, J., Mann, R.B., Yu, H.: (2021). arXiv:2111.04392 [quant-ph]

  44. Hu, H., Zhang, J., Yu, H.: (2022). arXiv:2204.01219 [quant-ph]

  45. Salton, G., Mann, R.B., Menicucci, N.C.: New J. Phys. 17, 035001 (2015). https://doi.org/10.1088/1367-2630/17/3/035001

    ADS  Article  Google Scholar 

  46. Olson, S.J., Ralph, T.C.: Phys. Rev. A 85, 012306 (2012). https://doi.org/10.1103/PhysRevA.85.012306

    ADS  Article  Google Scholar 

  47. Sabín, C., Peropadre, B., del Rey, M., Martín-Martínez, E.: Phys. Rev. Lett. 109, 033602 (2012). https://doi.org/10.1103/PhysRevLett.109.033602

    ADS  Article  Google Scholar 

  48. Brown, E.G., del Rey, M., Westman, H., León, J., Dragan, A.: Phys. Rev. D 91, 016005 (2015). https://doi.org/10.1103/PhysRevD.91.016005

    ADS  MathSciNet  Article  Google Scholar 

  49. Hu, B.L., Lin, S.-Y., Louko, J.: Class. Quant. Grav. 29, 224005 (2012). https://doi.org/10.1088/0264-9381/29/22/224005

    ADS  Article  Google Scholar 

  50. Brown, E.G., Martin-Martinez, E., Menicucci, N.C., Mann, R.B.: Phys. Rev. D 87, 084062 (2013). https://doi.org/10.1103/PhysRevD.87.084062. arXiv:1212.1973 [quant-ph]

    ADS  Article  Google Scholar 

  51. Bruschi, D.E., Lee, A.R., Fuentes, I.: J. Phys. A 46, 165303 (2013). https://doi.org/10.1088/1751-8113/46/16/165303. arXiv:1212.2110 [quant-ph]

    ADS  MathSciNet  Article  Google Scholar 

  52. Unruh, W.G.: Phys. Rev. D 14, 870 (1976). https://doi.org/10.1103/PhysRevD.14.870

    ADS  Article  Google Scholar 

  53. DeWitt, B.S.: In: General Relativity: An Einstein centenary survey. Hawking, S.W., Israel, W. (Eds.), pp. 680–745 (Cambridge University Press 1979)

  54. Martin-Martinez, E., Montero, M., del Rey, M.: Phys. Rev. D 87, 064038 (2013). https://doi.org/10.1103/PhysRevD.87.064038. arXiv:1207.3248 [quant-ph]

    ADS  Article  Google Scholar 

  55. Funai, N., Louko, J., Martín-Martínez, E.: Phys. Rev. D 99, 065014 (2019). https://doi.org/10.1103/PhysRevD.99.065014. arXiv:1807.08001 [quant-ph]

    ADS  MathSciNet  Article  Google Scholar 

  56. Funai, N.: Investigations into quantum light-matter interactions, their approximations and applications, Ph.D. thesis, U. Waterloo (main) (2021)

  57. Ng, K.K., Mann, R.B., Martín-Martínez, E.: Phys. Rev. D 96, 085004 (2017). https://doi.org/10.1103/PhysRevD.96.085004

    ADS  MathSciNet  Article  Google Scholar 

  58. Cong, W., Bicak, J., Kubiznak, D., Mann, R.B.: Phys. Lett. B 820, 136482 (2021). https://doi.org/10.1016/j.physletb.2021.136482. arXiv:2103.05802 [gr-qc]

    Article  Google Scholar 

  59. Dappiaggi, C., Marta, A.: Math. Phys. Anal. Geom. 24, 28 (2021). https://doi.org/10.1007/s11040-021-09402-5. arXiv:2101.10290 [math-ph]

    Article  Google Scholar 

  60. Smith, A.R.H., Mann, R.B.: Class. Quant. Grav. 31, 082001 (2014). https://doi.org/10.1088/0264-9381/31/8/082001. arXiv:1309.4125 [gr-qc]

    ADS  Article  Google Scholar 

  61. Henderson, L.J., Mann, R.B., Hennigar, R.A., Smith, A.R.H., Zhang, J.: Class. Quant. Grav. 52, 1 (2018). https://doi.org/10.1080/14484846.2018.1432089

    Article  Google Scholar 

  62. Robbins, M.P.G., Henderson, L.J., Mann, R.B.: Class. Quant. Grav. 39, 02LT01 (2022). https://doi.org/10.1088/1361-6382/ac08a8. arXiv:2010.14517 [hep-th]

    Article  Google Scholar 

  63. Kaplanek, G., Burgess, C.P.: JHEP 01, 098 (2021). https://doi.org/10.1007/JHEP01(2021)098. arXiv:2007.05984 [hep-th]

    ADS  Article  Google Scholar 

  64. de Souza Campos, L., Dappiaggi, C.: Phys. Lett. B 816, 136198 (2021). https://doi.org/10.1016/j.physletb.2021.136198. arXiv:2009.07201 [hep-th]

    Article  Google Scholar 

  65. de Souza Campos, L., Dappiaggi, C.: Phys. Rev. D 103, 025021 (2021). https://doi.org/10.1103/PhysRevD.103.025021. arXiv:2011.03812 [hep-th]

    ADS  Article  Google Scholar 

  66. Robbins, M.P.G., Mann, R.B.: (2021). arXiv:2107.01648 [gr-qc]

  67. Henderson, L.J., Ding, S.Y., Mann, R.B.: (2022). arXiv:2201.11130 [quant-ph]

  68. Gallock-Yoshimura, K., Tjoa, E., Mann, R.B.: Phys. Rev. D 104, 025001 (2021). https://doi.org/10.1103/PhysRevD.104.025001

    ADS  Article  Google Scholar 

  69. Bueley, K., Huang, L., Gallock-Yoshimura, K., Mann, R.B.: Harvesting mutual information from btz black hole spacetime (2022). https://doi.org/10.48550/ARXIV.2205.07891

  70. Gray, F., Kubiznak, D., May, T., Timmerman, S., Tjoa, E.: JHEP 11, 054 (2021). https://doi.org/10.1007/JHEP11(2021)054. arXiv:2105.09337 [hep-th]

    ADS  Article  Google Scholar 

  71. Huang, Z., Tian, Z.: Nucl. Phys. B 923, 458 (2017). https://doi.org/10.1016/j.nuclphysb.2017.08.014

    ADS  Article  Google Scholar 

  72. Kaplanek, G., Burgess, C.P.: JHEP 02, 053 (2020). https://doi.org/10.1007/JHEP02(2020)053. arXiv:1912.12955 [hep-th]

    ADS  Article  Google Scholar 

  73. Du, H., Mann, R.B.: JHEP 05, 112 (2021). https://doi.org/10.1007/JHEP05(2021)112. arXiv:2012.08557 [hep-th]

    ADS  Article  Google Scholar 

  74. Foo, J., Mann, R.B., Zych, M.: Class. Quant. Grav. 38, 115010 (2021). https://doi.org/10.1088/1361-6382/abf1c4. arXiv:2012.10025 [gr-qc]

    ADS  Article  Google Scholar 

  75. Foo, J., Arabaci, C.S., Zych, M., Mann, R.B.: (2021). arXiv:2111.13315 [gr-qc]

  76. Howl, R., Akil, A., Kristjánsson, H., Zhao, X., Chiribella, G.: (2022). arXiv:2203.05861 [quant-ph]

  77. Faure, R., Perche, T.R., Torres, Bd.S.L.: Phys. Rev. D 101, 125018 (2020). https://doi.org/10.1103/PhysRevD.101.125018

    ADS  MathSciNet  Article  Google Scholar 

  78. Pitelli, J.P.M., Perche, T.R.: Phys. Rev. D 104, 065016 (2021). https://doi.org/10.1103/PhysRevD.104.065016

    ADS  Article  Google Scholar 

  79. Onoe, S., Guedes, T.L.M., Moskalenko, A.S., Leitenstorfer, A., Burkard, G., Ralph, T.C.: 1 (2021). arXiv:2103.14360

  80. Torres-Arenas, A.J., López-Zúñiga, E.O., Saldaña-Herrera, J.A., Dong, Q., Sun, G.H., Dong, S.H.: arXiv (2018). arXiv:1810.03951

  81. Khan, S., Khan, N.A., Khan, M.K.: Commun. Theor. Phys. 61, 281 (2014). https://doi.org/10.1088/0253-6102/61/3/02. arXiv:1402.7152

    Article  Google Scholar 

  82. Hwang, M.-R., Park, D., Jung, E.: Phys. Rev. A 83, 012111 (2011). https://doi.org/10.1103/PhysRevA.83.012111

    ADS  Article  Google Scholar 

  83. Szypulski, J., Grochowski, P., Dębski, K., Dragan, A.: (2021)

  84. Gühne, O., Tóth, G.: Phys. Rep. 474, 1 (2009). https://doi.org/10.1016/j.physrep.2009.02.004. arXiv:0811.2803

    ADS  MathSciNet  Article  Google Scholar 

  85. Silman, J., Reznik, B.: Phys. Rev. A 71, 054301 (2005). https://doi.org/10.1103/PhysRevA.71.054301

    ADS  Article  Google Scholar 

  86. Lorek, K., Pecak, D., Brown, E.G., Dragan, A.: Phys. Rev. A 90, 032316 (2014). https://doi.org/10.1103/PhysRevA.90.032316

    ADS  Article  Google Scholar 

  87. Avalos, D.M., Gallock-Yoshimura, K., Henderson, L.J., Mann, R.B.: (2022). arXiv:2204.02983 [quant-ph]

  88. Dur, W., Vidal, G., Cirac, J.I.: Phys. Rev. A - At., Mol., Opt. Phys. 62, 062314 (2000). https://doi.org/10.1103/PhysRevA.62.062314

    ADS  Article  Google Scholar 

  89. Ou, Y.-C., Fan, H.: Phys. Rev. A 75, 062308 (2007). https://doi.org/10.1103/PhysRevA.75.062308

    ADS  MathSciNet  Article  Google Scholar 

  90. Shi, X.: 2, 1 (2022). https://arxiv.org/abs/2206.02232

  91. Halder, P., Mal, S., Sen, A.: Phys. Rev. A 104, 1 (2021). https://doi.org/10.1103/PhysRevA.104.062412. arXiv:2108.06173

    Article  Google Scholar 

  92. Ou, Y.C., Fan, H.: Phys. Rev. A - At., Mol., Opt. Phys. 75, 1 (2007). https://doi.org/10.1103/PhysRevA.75.062308. arXiv:0702127 [quant-ph]

    Article  Google Scholar 

  93. Vidal, G., Werner, R.F.: Phys. Rev. A 65, 032314 (2002). https://doi.org/10.1103/PhysRevA.65.032314

    ADS  Article  Google Scholar 

  94. Smith, A.R.: University of Waterloo, Ph.D. thesis, University of Waterloo (2017). https://uwspace.uwaterloo.ca/handle/10012/12618

  95. Coffman, V., Kundu, J., Wootters, W.K.: Phys. Rev. A 61, 052306 (2000). https://doi.org/10.1103/PhysRevA.61.052306. arXiv:quant-ph/9907047

    ADS  Article  Google Scholar 

  96. W. R. Inc., “Mathematica, Version 12.2,” Champaign, IL (2020). https://www.wolfram.com/mathematica

Download references

Acknowledgements

All the numerical calculations and the figures were made via Mathematica software [96]. This work was supported in part by the Natural Sciences and Engineering Research Council of Canada. We are grateful to Meenu Kumari for helpful discussions. Data sharing is not applicable to this article as no datasets were generated or analysed during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Mann.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to a Topical Collection: In Memory of Professor T Padmanabhan.

Appendices

Appendix A: The \(\pi \)-tangle for the scalene triangle configuration

Here we present the calculations for the \(\pi \)-tangle when the three detectors are in a scalene triangular configuration.

When the distance between each pair of detectors is arbitrary, the density matrix Eq. (6) becomes

$$\begin{aligned} {\rho }_{ABC} = \begin{pmatrix} 1-3P &{} 0 &{} 0 &{} 0 &{} X_{BC}^* &{} X_{AC}^* &{} X_{AB}^* &{} 0 \\ 0 &{} P &{} C_{BC}^* &{} C_{AC}^* &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} C_{BC} &{} P &{} C_{AB}^* &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} C_{AC} &{} C_{AB} &{} P &{} 0 &{} 0 &{} 0 &{} 0 \\ X_{BC} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ X_{AC} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ X_{AB} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \end{pmatrix}. \end{aligned}$$
(A1)

Following the same procedure for the equilateral triangular and linear configurations, we obtain

$$\begin{aligned} {\mathcal {N}}_{A(BC)}&= \max \left\{ 0,\frac{2}{\sqrt{3}}\sqrt{C_{BC}+|X_{AB}|^2+|X_{AC}|^2}\right. \nonumber \\&\quad \left. \cos \left[ \frac{\pi }{3}+\frac{1}{3}\arccos \left( \frac{3\sqrt{3}C_{BC}\left( X_{AB}X_{AC}^*+X_{AB}^*X_{AC}\right) }{2\big (C_{BC}^2+|X_{AB}|^2+|X_{AC}|^2\big )^{3/2}}\right) \right] -P\right\} \nonumber \\&\quad + \max \left\{ 0,\frac{2}{\sqrt{3}}\sqrt{C_{BC}+|X_{AB}|^2+|X_{AC}|^2}\right. \nonumber \\&\quad \left. \sin \left[ \frac{\pi }{6}+\frac{1}{3}\arccos \left( \frac{3\sqrt{3}C_{BC}\left( X_{AB}X_{AC}^*+X_{AB}^*X_{AC}\right) }{2\big (C_{BC}^2+|X_{AB}|^2+|X_{AC}|^2\big )^{3/2}}\right) \right] -P\right\} \end{aligned}$$
(A2)
$$\begin{aligned} \nonumber \\ {\mathcal {N}}_{B(AC)}&= \max \left\{ 0,\frac{2}{\sqrt{3}}\sqrt{C_{AC}+|X_{AB}|^2+|X_{BC}|^2}\right. \nonumber \\&\quad \left. \cos \left[ \frac{\pi }{3} +\frac{1}{3}\arccos \left( \frac{3\sqrt{3}C_{AC}\left( X_{AB}X_{BC}^*+X_{AB}^*X_{BC}\right) }{2\big (C_{AC}^2+|X_{AB}|^2+|X_{BC}|^2\big )^{3/2}}\right) \right] -P\right\} \nonumber \\&\quad + \max \left\{ 0,\frac{2}{\sqrt{3}}\sqrt{C_{AC}+|X_{AB}|^2+|X_{BC}|^2}\right. \nonumber \\&\quad \left. \sin \left[ \frac{\pi }{6}+\frac{1}{3}\arccos \left( \frac{3\sqrt{3}C_{AC}\left( X_{AB}X_{BC}^*+X_{AB}^*X_{BC}\right) }{2\big (C_{AC}^2+|X_{AB}|^2+|X_{BC}|^2\big )^{3/2}}\right) \right] -P\right\} \end{aligned}$$
(A3)
$$\begin{aligned} \nonumber \\ {\mathcal {N}}_{C(AB)}&= \max \left\{ 0,\frac{2}{\sqrt{3}}\sqrt{C_{AB}+|X_{AC}|^2+|X_{BC}|^2}\right. \nonumber \\&\quad \left. \cos \left[ \frac{\pi }{3}+\frac{1}{3}\arccos \left( \frac{3\sqrt{3}C_{AB}\left( X_{AC}X_{BC}^*+X_{AC}^*X_{BC}\right) }{2\big (C_{AB}^2+|X_{AC}|^2+|X_{BC}|^2\big )^{3/2}}\right) \right] -P\right\} \nonumber \\&\quad + \max \left\{ 0,\frac{2}{\sqrt{3}}\sqrt{C_{AB}+|X_{AC}|^2+|X_{BC}|^2}\right. \nonumber \\&\quad \left. \sin \left[ \frac{\pi }{6}+\frac{1}{3}\arccos \left( \frac{3\sqrt{3}C_{AB}\left( X_{AC}X_{BC}^*+X_{AC}^*X_{BC}\right) }{2\big (C_{AB}^2+|X_{AC}|^2+|X_{BC}|^2\big )^{3/2}}\right) \right] -P\right\} \end{aligned}$$
(A4)

and

$$\begin{aligned} {\mathcal {N}}_{A(B)}&= {\mathcal {N}}_{B(A)} = \max \big [0,|X_{AB}|-P\big ]\,, \end{aligned}$$
(A5)
$$\begin{aligned} {\mathcal {N}}_{A(C)}&= {\mathcal {N}}_{C(A)} = \max \big [0,|X_{AC}|-P\big ]\,, \end{aligned}$$
(A6)
$$\begin{aligned} {\mathcal {N}}_{B(C)}&= {\mathcal {N}}_{C(B)} = \max \big [0,|X_{BC}|-P\big ]\,. \end{aligned}$$
(A7)

The \(\pi \)-tangle is then easily computed using Eqs. (12) and (11).

Appendix B: A toy model

The introduction of the \(\pi \)-tangle [92] has generally been thought to satisfy the CKW inequality. Specficially “For any pure \(2\otimes 2\otimes 2\) states \({|{\phi }\rangle }_{ABC}\), the entanglement quantified by the negativity between A and B, between A and C, and between A and the single object BC satisfies the following CKW-inequality-like monogamy inequality:

$$\begin{aligned} {\mathcal {N}}^2_{AB}+{\mathcal {N}}^2_{AC}\le {\mathcal {N}}^2_{A(BC)}, \end{aligned}$$

where \({\mathcal {N}}_{AB}\) and \({\mathcal {N}}_{AC}\) are the negativities of the mixed states”. Although the preceding inequality holds only for pure tripartite systems, the form of the preceding statement suggests that violations of the CKW inequality are perhaps unexpected and somewhat counter-intuitive. To illustrate that such violations are not a consequence of the perturbative expression given in (6), we present a simple density matrix for a tripartite system of qubits that can have negative \(\pi \)-tangle over a wide range of parameters.

Assume that we have a density matrix of the form

$$\begin{aligned} \rho _{ABC} = \begin{pmatrix} 1-3P-3E-\Sigma &{} 0 &{} 0 &{} 0 &{} X^* &{} X^* &{} X^* &{} 0 \\ 0 &{} P &{} C &{} C &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} C &{} P &{} C &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} C &{} C &{} P &{} 0 &{} 0 &{} 0 &{} 0\\ X &{} 0 &{} 0 &{} 0 &{} E &{} 0 &{} 0 &{} 0\\ X &{} 0 &{} 0 &{} 0 &{} 0 &{} E &{} 0 &{} 0\\ X &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} E &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \Sigma \end{pmatrix}\,, \end{aligned}$$
(B1)

where \(P,C,E,\Sigma \in {\mathbb {R}}\), which is clearly trace 1 and Hermitian. In order for this matrix to be a valid density matrix, it must have positive eigenvalues, which puts the following constraints on the elements of \(\rho _{ABC}\):

$$\begin{aligned}&E \ge 0\,, \end{aligned}$$
(B2a)
$$\begin{aligned}&\Sigma \ge 0\,, \end{aligned}$$
(B2b)
$$\begin{aligned}&P \ge C\,, \end{aligned}$$
(B2c)
$$\begin{aligned}&P \ge -2C\,, \end{aligned}$$
(B2d)
$$\begin{aligned}&(1-3P-2E-\Sigma ) \nonumber \\&\quad \pm \sqrt{1-8E-16E^2-6P+24EP+9P^2+12|X|^2-2\Sigma +8E\Sigma +6P\Sigma +\Sigma ^2} \ge 0\,. \nonumber \\ \end{aligned}$$
(B2e)

From constraints Eqs. (B2c) and (B2d), we get the additional constraint:

$$\begin{aligned} P \ge 0. \end{aligned}$$
(B3)

If we assume that

$$\begin{aligned}&\xi :=1-3P-2E-\Sigma \ge 0\,, \end{aligned}$$
(B4)

which will be true if \(P,E,\Sigma \ll 1\), then constraint (B2e) will be satisfied provided:

$$\begin{aligned} (1-3P-2E-\Sigma )^2&\ge \big (1-8E-16E^2-6P+24EP+9P^2+12|X|^2\nonumber \\&\quad -2\Sigma +8E\Sigma +6P\Sigma +\Sigma ^2\big ) \nonumber \\&\implies E\xi \ge E^2 + 3|X|^2\,, \end{aligned}$$
(B5)

which is consistent with the assumption (B4) since \(E\ge 0\) and \(|X|\ge 0\).

The partial transpose of \(\rho _{ABC}\) with respect to A is

$$\begin{aligned} \rho _{ABC}^{T_A} = \begin{pmatrix} 1-3P-3E-\Sigma &{} 0 &{} 0 &{} 0 &{} X^* &{} C &{} C &{} 0 \\ 0 &{} P &{} C &{} X^* &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} C &{} P &{} X^* &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} X &{} X &{} P &{} 0 &{} 0 &{} 0 &{} 0\\ X &{} 0 &{} 0 &{} 0 &{} E &{} 0 &{} 0 &{} 0\\ C &{} 0 &{} 0 &{} 0 &{} 0 &{} E &{} 0 &{} 0\\ C &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} E &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \Sigma \end{pmatrix}\,, \end{aligned}$$
(B6)

which only has two eigenvalues that can be negative while maintaining non-negative eigenvalues for \(\rho _{ABC}\):

$$\begin{aligned}&\frac{1}{2}\left( 2P+C - \sqrt{C^2+8|X|^2}\right) \,, \end{aligned}$$
(B7)
$$\begin{aligned}&\frac{1}{2} \Bigg ( (1-3P-2E-\Sigma ) \nonumber \\&\quad - \sqrt{(1-3P-2E-\Sigma )^2+4\left( 2C^2-E+3E^2+EP+|X|^2+E\Sigma \right) } \Bigg )\,. \end{aligned}$$
(B8)

In particular eigenvalue (B7) will only be non-negative if

$$\begin{aligned} (2P+C)^2 \ge \big (C^2+8|X|^2\big ) \implies P(P+C) \ge 2|X|^2 \end{aligned}$$
(B9)

and eigenvalue (B8) only be non-negative if

$$\begin{aligned} (1-3P-2E-\Sigma )^2&\ge \big [(1-3P-2E-\Sigma )^2\nonumber \\&\quad +4\left( 2C^2-E+3E^2+EP+|X|^2+E\Sigma \right) \big ] \nonumber \\&\implies E\xi \ge E^2 + |X|^2 + 2C^2. \end{aligned}$$
(B10)

Note that provided \(C^2>|X|^2\), eigenvalue (B8) can be negative without contradicting condition (B5).

Finally, we calculate the negativity of \(\rho _{AB}={{\,\mathrm{Tr}\,}}_C[\rho _{ABC}]\). The partial transpose of \(\rho _{AB}\) is

$$\begin{aligned} \rho _{AB}^{T_A} = \begin{pmatrix} 1-2P-3E-\Sigma &{} 0 &{} 0 &{} C \\ 0 &{} P+E &{} X^* &{} 0 \\ 0 &{} X &{} P+E &{} 0 \\ C &{} 0 &{} 0 &{} E+\Sigma \end{pmatrix}\,, \end{aligned}$$
(B11)

which again only has two eigenvalues that can be negative while maintaining non-negative eigenvalues for \(\rho _{AB}\):

$$\begin{aligned}&E+P-|X|\,, \end{aligned}$$
(B12)
$$\begin{aligned}&\frac{1}{2}\left( (1-2P-2E) - \sqrt{4C^2+(1-4E-2P-2\Sigma )^2}\right) \,. \end{aligned}$$
(B13)

Eigenvalue (B12) will be non-negative if

$$\begin{aligned} P+E > |X| \end{aligned}$$
(B14)

and eigenvalue (B13) will be non-negative if

$$\begin{aligned} (1-2P-2E)^2&\ge \big (4C^2+(-1+4E+2P+2\Sigma )^2\big ) \nonumber \\&\implies E\xi + \Sigma \xi -C^2 - E^2 - E\Sigma + PE + P\Sigma \ge 0.\nonumber \\ \end{aligned}$$
(B15)

Under the assumption that

$$\begin{aligned} P\ge \Sigma \,, \end{aligned}$$
(B16)

then condition (B15) can be related to condition (B10) by noticing that

$$\begin{aligned} E\xi + \Sigma \xi -C^2 - E^2 - E\Sigma + PE + P\Sigma&= \left( E\xi -E^2-|X|^2-2C^2\right) \nonumber \\&\quad + |X|^2 + C^2 + \Sigma \xi + P\Sigma + E(P-\Sigma ) \nonumber \\&\ge \left( E\xi -E^2-|X|^2-2C^2\right) \,, \end{aligned}$$
(B17)

meaning that if Eq. (B15) is not satisfied then neither will Eq. (B10); if Eq. (B10) is satisfied then Eq. (B15) will be too.

The only way that the CKW inequality is violated will be if \({\mathcal {N}}_{A(B)}\) is nonzero. In other words, at least one of the eigenvalues of the partial transpose of \(\rho _{AB}\) must be negative. We will first consider the case where eigenvalue (B12) is negative, followed by the case where  (B13) is negative. We will also show that under the assumptions that (B4) and (B16) are both valid, it is not possible for both eigenvalues to be simultaneously negative.

Case #1: Assume that eigenvalue (B12) is negative

If eigenvalue (B12) is negative, then \(|X|>P+E\) and we also have \(|X|^2>C^2\) (since \(P+E\ge P\ge C\)). This means that in order that \(\rho _{ABC}\) remain a valid density matrix, eigenvalue (B8) must be non-negative, implying that eigenvalue (B13) must be also non-negative. Additionally eigenvalue (B7) must also be negative since

$$\begin{aligned} |X|>P+E\ge P \implies 2|X|^2 > 2P^2 = P^2+P^2 \ge P^2+PC = P(P+C)\,.\nonumber \\ \end{aligned}$$
(B18)

In this case, the \(\pi \)-tangle is

$$\begin{aligned} \pi&= {\mathcal {N}}_{A(BC)}^2 - 2{\mathcal {N}}_{A(B)}^2 \nonumber \\&= \Bigg (\frac{1}{2}\left( \sqrt{C^2+8|X|^2}-2P-C\right) \Bigg )^2 - 2\big (|X|-P-E\big )^2\,, \end{aligned}$$
(B19)

which can be simplified by considering a Taylor expansion of the matrix elements of \(\rho _{ABC}\) in powers of the coupling strength, \(\lambda \ll 1\):

$$\begin{aligned} P&= \lambda ^2 P_2 + \lambda ^4 P_4 + \lambda ^6 P_6 + {\mathcal {O}}\left( \lambda ^8\right) , \nonumber \\ C&= \lambda ^2 C_2 + \lambda ^4 C_4 + \lambda ^6 C_6 + {\mathcal {O}}\left( \lambda ^8\right) , \nonumber \\ X&= \lambda ^2 X_2 + \lambda ^4 X_4 + \lambda ^6 X_6 + {\mathcal {O}}\left( \lambda ^8\right) , \nonumber \\ E&= \lambda ^4 E_4 + \lambda ^6 E_6 + {\mathcal {O}}\left( \lambda ^8\right) , \nonumber \\ \Sigma&= \lambda ^6 \Sigma _6 + {\mathcal {O}}\left( \lambda ^8\right) . \end{aligned}$$
(B20)

Under this expansion, the \(\pi \)-tangle becomes:

$$\begin{aligned} \pi&\approx \lambda ^4\Bigg (\frac{1}{4}\left( \sqrt{C_2^2+8|X_2|^2}-2P_2-C_2\right) ^2-2\big (|X_2|-P_2\big )^2\Bigg )\,, \end{aligned}$$
(B21)

which will be non-negative if

$$\begin{aligned}&\Big (8P_2|X_2|+C_2^2+2P_2C_2-2P_2^2\Big )^2 \nonumber \\&\quad \ge \left( (2P_2+C_2)\sqrt{C_2^2+8|X_2|^2}\right) ^2 \nonumber \\&\qquad \iff 4\Big [P_2^2(P_2-C_2)^2-2\big (|X_2|-P_2\big )\Big (C_2^2\big (2|X_2|-P_2\big )-|X_2|(2P_2-C_2)^2\Big )\Big ] \ge 0. \nonumber \\ \end{aligned}$$
(B22)
Fig. 10
figure 10

A plot of the perturbative \(\pi \)-tangle (B21) where the value of \(C_2\) is fixed to be \(C_2=0.9P_2\) and \(\lambda =0.1\). There are regions of the parameter space where the \(\pi \)-tangle is negative. The region where \(P_2>|X_2|\) is excluded from the plot, since this corresponds to eigenvalue (B12) being non-negative

As the condition in (B22) is not particularly instructive, we plot the perturbative \(\pi \)-tangle (B21) in Fig. 10, where it is clear that there are regions of the parameter space where the \(\pi \)-tangle is negative, meaning the CKW inequality is not satisfied. For example, if

$$\begin{aligned} \lambda= & {} 0.1,\ P_2=1,\ C_2=0.9,\ |X_2|=4 \implies \pi \approx \frac{3261-29\sqrt{12\ 881}}{2\ 000\ 000} \\\approx & {} -1.52\times 10^{-5}. \end{aligned}$$

Additionally, if the non-perturbative expression for the \(\pi \)-tangle (B19) is considered, it is still possible to find regions of the parameter space where the CKW inequality is not satisfied. For example,

$$\begin{aligned}&P=0.01,\ C_2=0.009,\ |X_2|=0.04,\ E=0.00011 \\&\quad \implies \pi = \frac{8\ 218\ 379 - 72\ 500\ \sqrt{12\ 881}}{5\ 000\ 000\ 000} \approx -1.99\times 10^{-6}. \end{aligned}$$

Case #2: Assume that eigenvalue (B13) is negative

If eigenvalue (B13) is negative, then \(\sqrt{4C^2+(1-4E-2P-2\Sigma )^2}>(1-2P-2E)\) and eigenvalue (B8) will also be negative. Recall that in order to ensure that \(\rho _{ABC}\) is a valid density matrix, we also require \(C^2>|X|^2\). This also means that eigenvalue (B12) is non-negative since \(|X|^2 < C^2 \le P^2 \le (P+E)^2\). Also notice that if \(C\ge 0\), then

$$\begin{aligned} P(P+C) \ge C(C+C) = 2C^2 > 2|X|^2\,, \end{aligned}$$

and if \(C<0\), then Eq. (B2d) becomes \(P\ge -2C=2|C|\), and

$$\begin{aligned} P(P+C) = P\big (P-|C|\big ) \ge 2|C|\big (2|C|-|C|\big ) = 2|C|^2 = 2C^2 > 2|X|^2\,,\nonumber \\ \end{aligned}$$
(B23)

so, eigenvalue (B7) is also non-negative regardless of the sign of C. Therefore, the \(\pi \)-tangle is

$$\begin{aligned} \pi&= {\mathcal {N}}_{A(BC)}^2 - 2{\mathcal {N}}_{A(B)}^2 \nonumber \\&= \left[ \frac{1}{2}\Big (\sqrt{(1-3P-2E-\Sigma )^2+4\left( 2C^2-E+3E^2+EP+|X|^2+E\Sigma \right) }\right. \nonumber \\&\quad \left. - (1-3P-2E-\Sigma )\Big )\right] ^2 \nonumber \\&\quad -2 \Bigg [\frac{1}{2}\left( \sqrt{4C^2+(1-4E-2P-2\Sigma )^2} - (1-2P-2E)\right) \Bigg ]^2 \end{aligned}$$
(B24)
$$\begin{aligned}&\approx \lambda ^8\Big (2\big (C_2^2+|X_2|^2\big )^2-\big (E_4+|X_2|^2\big )^2\Big ), \end{aligned}$$
(B25)

where the last line is from the perturbative expansion of \(\rho _{ABC}\) [Eq. (B20)]. In this case, the \(\pi \)-tangle will be non-negative if

$$\begin{aligned} E_4 \le \big (\sqrt{2}-1\big )|X_2|^2 + \sqrt{2}C_2^2\,. \end{aligned}$$
(B26)

Once again, we can find regions of the parameter space where the \(\pi \)-tangle is negative, meaning the CKW inequality is not satisfied. For example if

$$\begin{aligned}&\lambda =0.1,\ P_2=1,\ C_2=0.9,\ |X_2|=0.8,\ E_4=1.5 \\&\quad \implies \pi = -\frac{1873}{500\ 000\ 000\ 000} \approx -3.75\times 10^{-9}. \end{aligned}$$

Additionally, if the non-perturbative expression for the \(\pi \)-tangle (B24) is considered, it is still possible to find regions of the parameter space where the CKW inequality is not satisfied. For example if

$$\begin{aligned}&P=0.01,\ C=0.009,\ |X|=0.008,\ E=0.00015,\ \Sigma = 10^{-6}\\&\quad \implies \pi = \frac{-978\ 879\ 246\ 503+35\ 269\ 200\ \sqrt{2\ 961\ 556\ 921}-969\ 699\ \sqrt{940\ 638\ 421\ 201}}{2\ 000\ 000\ 000\ 000} \\&\quad \approx -2.43\times 10^{-9}. \end{aligned}$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mendez-Avalos, D., Henderson, L.J., Gallock-Yoshimura, K. et al. Entanglement harvesting of three Unruh-DeWitt detectors. Gen Relativ Gravit 54, 87 (2022). https://doi.org/10.1007/s10714-022-02956-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-022-02956-x

Keywords

  • Entanglement
  • Detectors
  • Quantum fields