Skip to main content

Emergence of cosmic space and its connection with thermodynamic principles

Abstract

The recent research on the connection between gravity and thermodynamics suggests that gravity could be an emergent phenomenon. Following this, Padmanabhan proposed a novel idea that the expansion of the universe can be interpreted as equivalent to the emergence of space with the progress of cosmic time. In this approach, the expansion of the universe is described by what is known as the law of emergence, which states that the expansion of the universe is driven by the difference between the number of bulk and surface degrees of freedom in a region bounded by the Hubble radius. This principle correctly reproduces the standard evolution of a Friedmann universe. We establish the connection of the law of emergence, which is conceptually different from the conventional paradigm to describe cosmology, with other well-established results in thermodynamics. It has been shown that the law of emergence can be derived from the unified first law of thermodynamics, which can then be considered as the backbone of the law. However, the law of emergence is rich in structure than implied by the First law thermodynamics alone. It further explains the evolution of the universe towards a state of maximum horizon entropy. Following this, it can be considered that the first law of thermodynamics, along with the additional constraints imposed by the maximisation of the horizon entropy, can together lead to the law of emergence. In the present article, we first make a brief review of Padmanabhan’s proposal and then studies its connection with the thermodynamics of the horizon in the context of Einstein’s, Gauss-Bonnet, and more general Lovelock gravity theories.

This is a preview of subscription content, access via your institution.

Data availability

We haven’t used any data for any of the analysis in this article.

References

  1. Akbar, M., Cai, R.-G.: Thermodynamic behaviour of Friedmann equations at the apparent horizon of FRW Universe. Phys. Rev. D 75, 084003 (2007)

    ADS  Google Scholar 

  2. Akbar, M., Cai, R.-G.: Friedmann equations of FRW universe in scalar-tensor gravity, f(R) gravity and first law of thermodynamics. Phys. Lett. B 635, 7 (2006). arXiv:hep-th/0602156 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  3. Akbar, M., Cai, R.-G.: Thermodynamic behavior of field equations for f (R) gravity. Phys. Letts. B 648, 243 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Arkani-Hamed, N., Dimopoulos, S., Dvali, G.: Phys. Lett. B 429, 263 (1998). arXiv:hep-ph/9803315 [hep-ph]

    ADS  Google Scholar 

  5. Ashtekar, A., Barrau, A.: (2015). arXiv:1504.07559 [gr-qc]

  6. Bamba, K., Geng, C.-Q., Nojiri, S., Odintsov, S. D.: Equivalence of modified gravity equation to the clausius relation. EPL 89, 50003 (2010)

  7. Bak, D., Rey, S.-J.: Cosmic holography. Class. Quant. Grav. 17, L83 (2000)

    MathSciNet  MATH  Google Scholar 

  8. Bardeen, J.M., Carter, B., Hawking, S.W.: The four laws of black hole mechanics. Commun. Math. Phys. 31, 161 (1973)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Bekenstein, J.D.: Lett. Nuovo Cimento Soc. Ital. Fis. 4, 737 (1972)

    ADS  Google Scholar 

  10. Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333 (1973)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Bekenstein, J.D.: Generalized second law of thermodynamics in Black hole physics. Phys. Rev. D 9, 3292 (1974)

    ADS  Google Scholar 

  12. Bekenstein, J.D.: Statistical Black Hole Thermodynamics. Phys. Rev. D 12, 3077 (1975)

    ADS  MathSciNet  Google Scholar 

  13. Bousso, R.: Cosmology and the S-matrix. Phys. Rev. D 71, 064024 (2005)

    ADS  MathSciNet  Google Scholar 

  14. Cai, R.G.: Gauss-Bonnet black holes in AdS spaces. Phys. Rev. D 65, 084014 (2002)

    ADS  MathSciNet  Google Scholar 

  15. Cai, R.G.: A note on thermodynamics of black holes in Lovelock gravity. Phys. Lett. B 582, 237 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Cai, R.G., Myung, Y.S.: Holography and entropy bounds in Gauss-Bonnet gravity. Phys. Lett. B 559, 60 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Cai, R.G., Guo, Q.: Gauss-Bonnet black holes in dS spaces. Phys. Rev. D 69, 104025 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Cai, R.-G., Kim, S.P.: JHEP 02, 050 (2005). arXiv:hep-th/0501055 [hep-th]

    ADS  Google Scholar 

  19. Cai, R.-G., Cao, L-M., Hu, Y-P.: Hawking radiation of apparent horizon in a FRW universe. Class. Quant. Grav. 26, 155018 (2009)

  20. Cai, R.-G., Cao, L.-M.: Phys. Rev. D 75, 064008 (2007). arXiv:gr-qc/0611071 [gr-qc]

    ADS  MathSciNet  Google Scholar 

  21. Cai, R.G.: Emergence of Space and Spacetime Dynamics of Friedmann-Robertson-Walker Universe. JHEP 11, 016 (2012)

  22. Caldwell, R., Linder, E.V.: The limits of quintessence. Phys. Rev. Lett. 95, 141301 (2005)

    ADS  Google Scholar 

  23. Callen, H.B.: Thermodynamics. Wiley, New York (1960)

    MATH  Google Scholar 

  24. Chakraborty S: Classical and Quantum Aspects of Gravity in Relation to the Emergent Paradigm (Springer Thesis), Springer (Switzerland) (2017)

  25. Chakraborty, S., Padmanabhan, T.: Evolution of Spacetime Arises due to the Departure from Holographic Equipartition in all Lanczos-Lovelock Theories of Gravity. Phys. Rev. D 90, 124017 (2014)

    ADS  Google Scholar 

  26. Chakraborty, S., Parattu, K., Padmanabhan, T.: Gravitational field equations near an arbitrary null surface expressed as a thermodynamic identity. JHEP 10, 097 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Chakraborty, S.: Lanczos-Lovelock gravity from a thermodynamic perspective. JHEP 1508, 029 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Chang-Young, E., Lee, D.: JHEP 04, 125 (2014). arXiv:1309.3084 [hep-th]

    ADS  Google Scholar 

  29. Chiba, T., Okabe, T., Yamaguchi, M.: Kinetically driven quintessence. Phys. Rev. D. 62, 023511 (2000)

    ADS  Google Scholar 

  30. Davies, P.: J. Phys. A 8, 609 (1975)

    ADS  Google Scholar 

  31. Damour, T.: Proceedings of the Second Marcel Grossmann Meeting on General Relativity (1982)

  32. de Haro, S., Dieks, D., Verlinde, E., et al.: Foundations of Physics 43(1), 1–7 (2013)

    ADS  MathSciNet  Google Scholar 

  33. Dezaki, F.L., Mirza, B.: Gen. Rel. Grav. 47, 67 (2015). arXiv:1406.3712 [gr-qc]

    ADS  Google Scholar 

  34. Eune, M., Kim, W.: Phys. Rev. D 88, 067303 (2013)

    ADS  Google Scholar 

  35. Frolov, A.V., Kofman, L.: Inflation and de Sitter thermodynamics. JCAP 05, 009 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Gambini, R., Pullin, J.: Phys. Rev. Lett. 110(21), 211301 (2013). arXiv:1302.5265 [gr-qc]

    ADS  Google Scholar 

  37. Gibbons, G.W., Hawking, S.W.: Action Integrals and Partition functions in Quantum Gravity. Phys. Rev. D 15, 2752 (1977)

    ADS  Google Scholar 

  38. Gibbons, G.W., Hawking, S.W.: Cosmological event horizons, thermodynamics and particle creation. Phys. Rev. D 15, 2738 (1977)

    ADS  MathSciNet  Google Scholar 

  39. Gruber, C., Luongo, O.: Cosmographic analysis of the equation of state of the universe through Padé approximations. Phys. Rev. D 89(10), 103506 (2014)

    ADS  Google Scholar 

  40. Hadi, H., Darabi, F., Sheykhi, A.: Emergent universe in the braneworld scenario. Eur. Phys. J. C 76, 323 (2016)

    ADS  Google Scholar 

  41. Hareesh, T., Krishna, P.B., Mathew, T.K.: First law of thermodynamics and emergence of cosmic space in a non-flat universe. JCAP 12, 024 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Hashemi, M., Jalalzadesh, S., Farahani, S.V.: The laws of thermodynamics and information for emergent cosmology. Gen. Rel. Grav 47, 139 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Hassan, B.V.T., Krishna, P.B., Mathew, T.K.: Emergence of space and expansion of universe. Class. Quant. Grav. 39, 115012 (2022). arXiv:1905.03552 [gr-qc]

  44. Hassan, B.V.T., Krishna, P.B., Mathew, T.K.: Emergence of space from non-equilibrium thermodynamics in f(R) gravity, arXiv:2111.00726 [gr-qc]

  45. Hawking, S.W.: Particle Creation by Black Holes. Commun. Math. Phys. 43, 199 (1975)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Hawking, S.W.: Black Holes and Thermodynamics. Phys. Rev. D 13, 191 (1976)

    ADS  Google Scholar 

  47. Hayward, S.A.: Unified first law of black hole dynamics and relativistic thermodynamics. Class. Quant. Grav. 15, 3147–3162 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  48. Hayward, S.A., Mukohyama, S., Ashworth, M.C.: Dynamic black hole entropy. Phys. Lett. A 256, 347–350 (1999)

    ADS  MathSciNet  Google Scholar 

  49. Horava, P., Witten, E.: Nucl. Phys. B 475, 94 (1996). arXiv:hep-th/9603142 [hep-th]

    ADS  Google Scholar 

  50. Jacobson, T.: Thermodynamics of space-time: The Einstein equation of state. Phys. Rev. Lett. 75, 1260 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  51. Kamenshchik, A.Y., Moschella, U., Pasquier, V.: An alternative to quintessence. Phys. Lett. B 511, 265 (2001)

    ADS  MATH  Google Scholar 

  52. Kolekar, S., Padmanabhan, T.: Phys. Rev. D 85, 024004 (2012). arXiv:1109.5353 [gr-qc]

    ADS  Google Scholar 

  53. Kolekar, S., Kothawala, D., Padmanabhan, T.: Phys. Rev. D 85, 064031 (2012). arXiv:1111.0973 [gr-qc]

    ADS  Google Scholar 

  54. Kolekar, S., Padmanabhan, T.: Phys. Rev. D 82, 024036 (2010). arXiv:1005.0619 [gr-qc]

    ADS  Google Scholar 

  55. Komatsu, N.: Thermodynamic constraints on a varying cosmological constant like term from the holographic equipartition law with a power law corrected entropy. Phys. Rev. D 96, 103507 (2017)

    ADS  Google Scholar 

  56. Komatsu, N.: Horizon thermodynamic in holographic cosmological models with a power law term. Phys. Rev. D 100, 123545 (2019)

    ADS  MathSciNet  Google Scholar 

  57. Kothawala, D., Padmanabhan, T.: Phys. Rev. D 79, 104020 (2009). arXiv:0904.0215 [gr-qc]

    ADS  Google Scholar 

  58. Krishna, P.B., Mathew, T.K.: Does holographic equipartition demand a pure cosmological constant? Mod. Phys. Lett. A 35, 2050334 (2020)

    ADS  MathSciNet  Google Scholar 

  59. Krishna, P.B., Mathew, T.K.: Holographic equipartition and the maximization of entropy. Phys. Rev. D 96, 063513 (2017)

    ADS  MathSciNet  Google Scholar 

  60. Krishna, P.B., Mathew, T.K.: Entropy maximization in the emergent gravity paradigm. Phys. Rev. D 99, 023535 (2019)

    ADS  MathSciNet  Google Scholar 

  61. Krishna, P.B., Mathew, T.K.: Emergence of cosmic space and the maximization of horizon entropy, arXiv:2002.02121 [gr-qc]

  62. Lanczos, C.: Z. Phys. 73, 147 (1932)

    ADS  Google Scholar 

  63. Lovelock, D.: The Einstein tensor and it’s generalization. J. Math. Phys. 12, 498 (1971)

    ADS  MathSciNet  MATH  Google Scholar 

  64. Mahith, M., Krishna, P.B., Mathew, T.K.: Expansion law from first law of thermodynamics. JCAP 12, 042 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  65. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation, 3rd edn. W.H, Freeman and Company (1973)

  66. Mukhopadhyay, A., Padmanabhan, T.: Phys. Rev. D 74, 124023 (2006). arXiv:hep-th/0608120

    ADS  MathSciNet  Google Scholar 

  67. Padmanabhan, T.: In The Universe (Springer) 239-251 (2000)

  68. Padmanabhan, T.: Class. Quant. Grav. 19, 5387 (2002). arXiv:gr-qc/0204019 [gr-qc]

    ADS  Google Scholar 

  69. Padmanabhan, T.: Gravitational entropy of static spacetimes and microscopic density of states. Class. Quant. Grav. 21, 4485 (2004). (arXiv:gr-qc/0308070 [gr-qc])

  70. Padmanabhan, T.: Braz. J. Phys. 35, 362 (2005). arXiv:gr-qc/0412068 [gr-qc]

    ADS  Google Scholar 

  71. Padmanabhan, T.: Albert Einstein century. Proceedings, International Conference, Paris, France, July 18-22, 2005, AIP Conf. Proc. 861, 179, (2006). arXiv:astro-ph/0603114 [astro-ph]

  72. Padmanabhan, T., Paranjape, A.: Phys. Rev. D 75, 064004 (2007). arXiv:gr-qc/0701003 [gr-qc]

  73. Padmanabhan, T.: Gen. Rel. Grav. 40, 529 (2008). arXiv:0705.2533 [gr-qc]

    ADS  MathSciNet  Google Scholar 

  74. Padmanabhan, T.: A Physical Interpretation of Gravitational Field Equations. AIp Conf. proc. 1241, 93 (2010). [arxiv:0911.1403 [gr-qc]]

    ADS  Google Scholar 

  75. Padmanabhan, T.: Entropy density of spacetime and thermodynamic interpretation of field equations of gravity in any diffeomorphic invariant theory, [arxiv:0903.1254 [hep-th]]

  76. Padmanabhan, T.: Equipartition of energy in the horizon degrees of freedom and the emergence of gravity. Mod. Phys. Lett. A 25, 1129 (2010). [arXiv:0912.3165 [gr-qc]]

    ADS  MathSciNet  MATH  Google Scholar 

  77. Padmanabhan, T.: Gravitation: Foundations and Frontiers. Cambridge University Press, Cambridge, UK (2010)

    MATH  Google Scholar 

  78. Padmanabhan, T.: Rept. Prog. Phys. 73, 046901 (2010). arXiv:0911.5004 [gr-qc]

    ADS  Google Scholar 

  79. Padmanabhan, T.: Mod. Phys. Lett. A 25, 1129 (2010). [arxiv: 0912.3165]

    ADS  Google Scholar 

  80. Padmanabhan, T.: Phys. Rev. D 81, 124040 (2010). [arxiv: 1003.5665]

    ADS  Google Scholar 

  81. Padmanabhan, T.: Phys. Rev. D 83, 044048 (2011). arXiv:1012.0119 [gr-qc]

    ADS  Google Scholar 

  82. Padmanabhan, T.: Emergence and Expansion of Cosmic Space as due to the Quest for Holographic Equipartition. arXiv:1206.4916 [hep-th] (2012)

  83. Padmanabhan, T.: Emergent perspective on gravity and dark energy. Research in Astro. Astrophys. 12, 891 (2012)

    ADS  Google Scholar 

  84. Padmanabhan, T., Padmanabhan, H.: Int. J. Mod. Phys. D 22, 1342001 (2013). arXiv:1302.3226 [astro-ph.CO]

    ADS  Google Scholar 

  85. Padmanabhan, T., Padmanabhan, H.: Int. J. Mod. Phys. D 23(6), 1430011 (2014). arXiv:1404.2284 [gr-qc]

    ADS  Google Scholar 

  86. Padmanabhan, T.: Gen. Rel. Grav. 46, 1673 (2014). arXiv:1312.3253 [gr-qc]

    ADS  Google Scholar 

  87. Padmanabhan, T.: Gravity and Spacetime: An Emergent Perspective, Part of Springer Handbook of Spacetime (2014)

  88. Padmanabhan, T.: Gravitational effective action at mesoscopic scales from the quantum microstructure of spacetime. Phys. Letts., B 814, 136109 (2021). [arXiv:2011.08859]

    MathSciNet  MATH  Google Scholar 

  89. Paranjape, A., Sarkar, S., Padmanabhan, T.: Phys. Rev. D 74, 104015 (2006). arXiv:hep-th/0607240 [hep-th]

    ADS  MathSciNet  Google Scholar 

  90. Parattu, K., Majhi, B.R., Padmanabhan, T.: Phys. Rev. D 87, 124011 (2013). arXiv:gr-qc/1303.1535 [gr-qc]

    ADS  Google Scholar 

  91. Pavon, D., Radicella, N.: Does the entropy of the Universe tend to a maximum? Gen. Rel. Grav. 45, 63 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  92. Randall, L., Sundrum, R.: Phys. Rev. Lett. 83, 3370 (1999). arXiv:hep-ph/9905221 [hep-ph]

    ADS  MathSciNet  Google Scholar 

  93. Rendall, A.D.: 100 Years Of Relativity : space-time structure: Einstein and beyond, 76, (2005). arXiv:gr-qc/0503112 [gr-qc]

  94. Rovelli, C., Vidotto, F.: Phys. Rev. Lett. 111, 091303 (2013). arXiv:1307.3228 [gr-qc]

    ADS  Google Scholar 

  95. Sahni, V., Starobinsky, A.A.: The Case for a Positive Cosmological Lambda-term. Int. J. Mod. Phys. D 9, 373 (2000)

    ADS  Google Scholar 

  96. Sheykhi, A., Dehghani, M.H., Hosseini, S.E.: Emergence of spacetime dynamics in entropy corrected and braneworld models. JCAP 04, 038 (2013)

    ADS  MathSciNet  Google Scholar 

  97. Sheykhi, A., Dehghani, M.H., Hosseini, S.E.: Friedmann equations in brane world scenarios from emergence of cosmic space. Phys. Lett. B 726, 23 (2013)

    ADS  MATH  Google Scholar 

  98. Sheykhi, A.: Friedmann equations from emergence of cosmic space. Phys. Rev. D 87, 061501(R) (2013)

    ADS  Google Scholar 

  99. Thorne, K.S., Price, R.H., MacDonald, D.A.: Yale University Press (1986)

  100. Tian, D.W., Booth, I.: Phys. Rev. D 92(2), 024001 (2015)

    ADS  MathSciNet  Google Scholar 

  101. Unruh, W.: Phys. Rev. D 14, 870 (1976)

    ADS  Google Scholar 

  102. Verlinde, E.P.: On the Origin of Gravity and the Laws of Newton. JHEP 04, 029 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  103. Wald, R.M.: Black hole entropy is the Noether charge. Phys. Rev. D 48, R3427 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  104. Yang, K., Liu, Y.-X., Wang, Y.-Q.: Emergence of Cosmic Space and the Generalized Holographic Equipartition. Phys. Rev. D 86, 104013 (2012)

    ADS  Google Scholar 

  105. Zhang, W., Kuang, X.: The quantum effect on Friedmann equation in FRW universe. Adv. High Energy Phys, 6758078 (2018)

  106. Zhao, G.B., et al.: Dynamical dark energy in light of the latest observations. Nat. Astron. 1, 627 (2017)

    ADS  Google Scholar 

  107. Zlatev, I., Wang, L.-M., Steinhardt, P.J.: Quintessence, cosmic co-incidence, and the cosmological constant. Phys. Rev. Lett. 82, 896 (1999)

    ADS  Google Scholar 

Download references

Acknowledgements

We thank Mahith M and Hareesh T for discussions. Hassan Basari V T acknowledges Cochin University of Science and Technology for research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Titus K. Mathew.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to a Topical Collection: In Memory of Professor T Padmanabhan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krishna, P.B., Hassan Basari, V.T. & Mathew, T.K. Emergence of cosmic space and its connection with thermodynamic principles. Gen Relativ Gravit 54, 58 (2022). https://doi.org/10.1007/s10714-022-02941-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-022-02941-4

Keywords

  • Emergent gravity
  • Emergent space
  • Law of emergence