Skip to main content

Nonclassicality of two-mode quantum optical states of an oscillating quantized massive scalar field in the FRW universe

Abstract

Semiclassical Einstein equations are used to describe the interaction of the back-reaction of the classical gravitational field with quantum matter fields in semiclassical gravity. We in our previous studies have made use of the semiclassical approximation to demonstrate the phenomenon of particle production, commonly called as preheating/reheating of the universe, which occurs after the inflationary epoch during the oscillatory phase of two-mode quantised massive scalar field of the chaotic inflationary model. We have previously used the language of two-mode coherent and squeezed quantum optical states formalisms to represent the massive scalar field; therefore, it would be useful to examine whether the field states exhibits classical or nonclassical nature in the cosmological context. In the present article, we will examine the nonclassical nature of two-mode quantum optical states in the cosmological context. We have made use of the criterion suggested by Lee in quantum optics, for the existence of nonclassical effects in two-mode states and calculated the equivalent Lee’s \({{\mathcal {D}}}_{12}^{(2)}\) parameter with the associated cosmological parameters, to examine the nonclassical nature of the states after inflation during the oscillatory phase of the scalar field.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Data availibility statement

The authors confirm that the data supporting the findings of this study are available within this research article.

References

  1. Narlikar, J.V.: Introduction to Cosmology. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  2. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W.H. Freeman Publications, New York, NY (1972)

    Google Scholar 

  3. Weinberg, S.: Gravitation and Cosmology. Wiley, New York (1972)

    Google Scholar 

  4. Kolb, E.W., Turner, M.S.: The Early Universe. Addison-Wesley, Boston (1993)

    Google Scholar 

  5. Penzias, A.A., Wilson, R.W.: Ap. J. 142, 419 (1965)

    ADS  Google Scholar 

  6. COBE Homepage, http://space.gstc.gov/astro/cobe(1992)

  7. Robert, H.: Dicke. Graviation and the Universe, American Philosophical society (1969)

  8. Zeldovich, Y.B., Khlopov, M.Y.: Phys. Lett. B 79, 239–241 (1978)

    ADS  Google Scholar 

  9. Preskill, J.: Phys. Rev. Lett. 43, 1365 (1979)

    ADS  Google Scholar 

  10. Carrigan, R.A., Jr., Peter Trower, W.: Magnetic Monopole. Springer, Boston, MA (1983)

    Google Scholar 

  11. Lightman, A.P.: Ancient Light: Our Changing View of the Universe. Harvard University Press, Cambridg (1993)

    Google Scholar 

  12. Eric, J.: Lerner.The Big Bang Never Happened. Random House, New York (1991)

    Google Scholar 

  13. Guth, A.H.: Phys. Rev. D 23, 347 (1981)

    ADS  Google Scholar 

  14. Linde, A.: Particle physics and inflationary cosmology. arxiv:hepth/0503203v1

  15. Linde, A.D.: Phys. Lett. B 108, 389 (1982)

    ADS  Google Scholar 

  16. Linde, A.D.: Phys. Lett. B 114, 431 (1982)

    ADS  MathSciNet  Google Scholar 

  17. Linde, A.D.: Phys. Lett. B 116, 340 (1982)

    ADS  Google Scholar 

  18. Linde, A.D.: Phys. Lett. B 116, 335 (1982)

    ADS  Google Scholar 

  19. Albrecht, A., Steinhardt, P.J.: Phys. Rev. Lett. 48, 1220 (1982)

    ADS  Google Scholar 

  20. Blau, S.K., Guth, A.H.: Inflationary Cosmology: Three Hundred Years of Gravitation. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  21. Linde, A.D.: Phys. Lett. B 129, 177 (1983)

    ADS  Google Scholar 

  22. Abbott, L.F., Farhi, E., Wise, M.B.: Phys. Lett. B 117, 29 (1982)

    ADS  Google Scholar 

  23. Dolgov, A.D., Linde, A.D.: Phys. Lett. B 116, 329 (1982)

    ADS  Google Scholar 

  24. Albrecht, A., Steinhardt, P.J., Turner, M.S., Wilczek, F.: Phys. Rev. Lett. 48, 1437 (1982)

    ADS  Google Scholar 

  25. Traschen, J.H., Brandenberger, R.H.: Phys. Rev. D 42, 2491 (1990)

    ADS  Google Scholar 

  26. Dolgov, A.D., Kirilova, D.P.: Sov. J. Nucl. Phys. 51, 172 (1990)

    Google Scholar 

  27. Dolgov, A.D., Kirilova, D.P.: Yad. Fiz. 51, 273 (1990)

    Google Scholar 

  28. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  29. C. Kiefer, In J. Ehlers, H. Friedrich (eds) Canonical Gravity: From Classical to Quantum. Springer, Berlin (1994)

  30. Bak, D., et al.: Phys. Rev. D 59, 027301 (1998)

    ADS  Google Scholar 

  31. Kim, S.P.: Phys. Rev. D 52, 3382 (1995)

    ADS  MathSciNet  Google Scholar 

  32. Kim, S.P.: Phys. Lett. A 205, 359 (1995)

    ADS  MathSciNet  Google Scholar 

  33. Kim, S.P.: J. Korean Phys. Soc. 28, S512 (1995)

    Google Scholar 

  34. Kim, S.P., Page, D.N.: J. Korean Phys. Soc. 35, S660 (1999)

    ADS  Google Scholar 

  35. Guth, A.H., Pi, S.-Y.: Phys. Rev. D 32, 1899 (1995)

    ADS  Google Scholar 

  36. Linde, A.D., Linde, D.A., Mezhlumian, A.: Phys. Rev. D 49, 1783 (1994)

    ADS  Google Scholar 

  37. Habib, S.: Phys. Rev. D 46, 2408 (1992)

    ADS  MathSciNet  Google Scholar 

  38. Schumaker, B.L.: Phys. Rep. 135, 317 (1986)

    ADS  MathSciNet  Google Scholar 

  39. Berger, B.K.: Phys. Rev. D 23, 1250 (1981)

    ADS  MathSciNet  Google Scholar 

  40. Grishchuk, L.P., Sidorov, Y.V.: Phys. Rev. D 42, 3413 (1990)

    ADS  MathSciNet  Google Scholar 

  41. Brandenberger, R., Mukhanov, V., Prokopec, T.: Phys. Rev. Lett. 69, 3606 (1992)

    ADS  Google Scholar 

  42. Brandenberger, R., Prokopec, T., Mukhanov, V.: Phys. Rev. D 48, 2443 (1993)

    ADS  MathSciNet  Google Scholar 

  43. Kuo, C.I., Ford, L.H.: Phys. Rev. D 47, 4510 (1993)

    ADS  Google Scholar 

  44. Matacz, A.L., Davies, P.C.W., Ottewill, A.C.: Phys. Rev. D 47, 1557 (1993)

    ADS  MathSciNet  Google Scholar 

  45. Albrecht, A., et al.: Phys. Rev. D 50, 4807 (1994)

    ADS  Google Scholar 

  46. Gasperini, M., Giovanni, M.: Class. Quantum Grav. L 10, 133 (1993)

    ADS  Google Scholar 

  47. Hu, B., Kang, G., Matacz, A.: Int. J. Mod. Phys. A 9, 991 (1994)

    ADS  Google Scholar 

  48. Suresh, P.K., Kuriakose, V.C., Babu Joseph, K.: Int. J. Mod. Phys. D 6, 781 (1995)

    ADS  Google Scholar 

  49. Suresh, P.K., Kuriakose, V.C.: Mod. Phys. Lett. A 13, 165 (1998)

    ADS  Google Scholar 

  50. Venkataratnam, K.K., Suresh, P.K.: Int. J. Mod. Phys. D 13, 239 (2004)

    ADS  Google Scholar 

  51. Dhayal, R., Rathore, M., Venkataratnam, K.K.: Mod. Phys. Lett. A 35(06), 2050022 (2020)

    ADS  Google Scholar 

  52. Rathore, M., Dhayal, R., Venkataratnam, K.K.: Int. J. Mod. Phys. D 25, 2050035 (2020)

    Google Scholar 

  53. Rathore, M., Dhayal, R., Venkataratnam, K.K.: Int. J. Mod. Phys. D 29, 2050119 (2020)

    ADS  Google Scholar 

  54. Rathore, M., Dhayal, R., Venkataratnam, K.K.: Eur. Phys. J. C 82, 333 (2022)

    ADS  Google Scholar 

  55. Lee, C.T.: Phys. Rev. A 42(3), 1608 (1990)

    ADS  Google Scholar 

  56. Mandel, L.: Opt. Lett. 4, 205 (1979)

    ADS  Google Scholar 

  57. Ford, L.H.: Ann. Phys. 144, 238 (1982)

    ADS  Google Scholar 

  58. Sudarshan, E.C.G.: Phys. Rev. Lett. 10, 277 (1963)

    ADS  MathSciNet  Google Scholar 

  59. Glauber, R.J.: Phys. Rev. 131, 2766 (1963)

    ADS  MathSciNet  Google Scholar 

  60. Kennard, E.H.: Z. Phys. 44, 326 (1927)

    ADS  Google Scholar 

  61. Plebanski, J.: Phys. Rev. 101, 1825 (1956)

    ADS  Google Scholar 

  62. Takahashi, H.: In: A.V. Balakrishnan (eds.) Advances in Communication Systems Theory and Applications, vol 1 (New York: Academic) 227, 310 (1965)

  63. Miller, M.M., Mishkin, E.A.: Phys. Rev. 152, 1110 (1966)

    ADS  Google Scholar 

  64. Yuen, H.P.: Phys. Rev. A 13, 2226 (1976)

    ADS  Google Scholar 

  65. Caves, C.M.: Phys. Rev. D 23, 1639 (1981)

    Google Scholar 

  66. Wang, X.-B., et al.: J. Phys. B. 34, 1059 (2001)

    ADS  Google Scholar 

  67. Kim, J.K., Kim, S.P.: J. Korean Phys. Soc. 33, 119 (1996)

    Google Scholar 

  68. Kim, J.K., Kim, S.P.: J. Phys. A 32, 2711 (1999)

    ADS  MathSciNet  Google Scholar 

  69. Kim, S.P.: Class. Quantum Grav. 13, 1377 (1996)

    ADS  Google Scholar 

  70. Kim, S.P.: In: Y.X. Gui, F.C. Khanna, Z.B. Su (eds.) Thermal Field Theories and Their Applications. World Scientific, Singapore (1966)

  71. Hillery, M.: Phys. Rev. A 35, 725 (1987)

    ADS  Google Scholar 

  72. Luks, A., Perinova, V., Hradil, Z.: Acta Phys. Pol. A 74, 713 (1988)

    Google Scholar 

  73. Dodonov, V.V.: J. Opt. B 4, R1 (2002)

    ADS  Google Scholar 

  74. Jing, Z., Wei, W., Ying, M.S.: Commun. Theor. Phys. 47, 317 (2007)

    ADS  Google Scholar 

  75. Zeng, R., Ahmad, M.A., Liu, S.: Opt. Commun. 271, 162 (2007)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Venkataratnam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rathore, M., Dhayal, R. & Venkataratnam, K.K. Nonclassicality of two-mode quantum optical states of an oscillating quantized massive scalar field in the FRW universe. Gen Relativ Gravit 54, 57 (2022). https://doi.org/10.1007/s10714-022-02936-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-022-02936-1

Keywords

  • Semi classical theory of gravity
  • Two-mode quantum optical states
  • Massive scalar field
  • Chaotic inflationary model