Skip to main content

Nonstaticity with type II, III, or IV matter field in \(f(R_{\mu \nu \rho \sigma },g^{\mu \nu })\) gravity

Abstract

In all \(n(\ge 3)\)-dimensional gravitation theories whose Lagrangians are functions of the Riemann tensor and metric, we show that static solutions are absent unless the total energy-momentum tensor for matter fields is of type I in the Hawking–Ellis classification. In other words, there is no hypersurface-orthogonal timelike Killing vector in a spacetime region with an energy-momentum tensor of type II, III, or IV. This asserts that, if back-reaction is taken into account to give a self-consistent solution, ultra-dense regions with a semiclassical type-IV matter field cannot be static even with higher-curvature correction terms. As a consequence, a static Planck-mass relic is possible as a final state of an evaporating black hole only if the semiclassical total energy-momentum tensor is of type I.

This is a preview of subscription content, access via your institution.

Notes

  1. 1.

    Some authors use \({{\mathcal {F}}}^{\mu \nu \rho \sigma }\) instead of \({\mathcal {{\bar{F}}}}^{\mu \nu \rho \sigma }\) in the expression (3) [12, 13], however, an ambiguity remains then because the symmetry of \({{\mathcal {F}}}^{\mu \nu \rho \sigma }\) is nontrivial. Indeed, even in the Einstein-Hilbert case (\(f=R\)), two equivalent expressions \(f=R_{\mu \nu \rho \sigma }g^{\mu \rho }g^{\nu \sigma }=R_{\mu \nu \rho \sigma }(g^{\mu \rho }g^{\nu \sigma }-g^{\mu \sigma }g^{\nu \rho })/2\) give different \({{\mathcal {F}}}^{\mu \nu \rho \sigma }\).

References

  1. 1.

    Hawking, S.W., Ellis, G.F.R.: The Large scale structure of space-time. Cambridge University Press, Cambridge (1973)

    Book  Google Scholar 

  2. 2.

    Santos, J., Rebouças, M.J., Teixeira, A.F.F.: Gen. Rel. Grav. 27, 989 (1995)

    ADS  Article  Google Scholar 

  3. 3.

    Rebouças, M.J., Santos, J., Teixeira, A.F.F.: Braz. J. Phys. 34, 535 (2004)

    ADS  Article  Google Scholar 

  4. 4.

    Maeda, H., Martinez, C.: PTEP 2020(4), 043E02 (2020)

  5. 5.

    Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., Herlt, E.: Exact Solutions of Einstein’s Field Equations. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  6. 6.

    Santos, J., Rebouças, M.J., Teixeira, A.F.F.: J. Math. Phys. 34, 186 (1993)

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    Bonnor, W.B.: Int. J. Theor. Phys. 3, 257 (1970)

    Article  Google Scholar 

  8. 8.

    Podolský, J., Švarc, R., Maeda, H.: Class. Quant. Grav. 36, 015009 (2019)

    ADS  Article  Google Scholar 

  9. 9.

    Martín-Moruno, P., Visser, M.: Class. Quant. Grav. 37, 015013 (2019)

    ADS  Article  Google Scholar 

  10. 10.

    Roman, T.A.: Phys. Rev. D 33, 3526 (1986)

    ADS  MathSciNet  Article  Google Scholar 

  11. 11.

    Martín-Moruno, P., Visser, M.: JHEP 1309, 050 (2013)

    ADS  Article  Google Scholar 

  12. 12.

    Deruelle, N., Sasaki, M., Sendouda, Y., Yamauchi, D.: Prog. Theor. Phys. 123, 169 (2010)

    ADS  Article  Google Scholar 

  13. 13.

    Padmanabhan, T.: Phys. Rev. D 84, 124041 (2011)

    ADS  Article  Google Scholar 

  14. 14.

    Hall, G.S.: Physical and Geometrical Classification in General Relativity, Brazilian Centre for Physics Research Monograph, CBPF-MO-001/93 (1993)

  15. 15.

    Lovelock, D.: J. Math. Phys. 12, 498 (1971)

    ADS  Article  Google Scholar 

  16. 16.

    Sotiriou, T.P., Faraoni, V.: Rev. Mod. Phys. 82, 451 (2010)

    ADS  Article  Google Scholar 

  17. 17.

    De Felice, A., Tsujikawa, S.: Living Rev. Rel. 13, 3 (2010)

    Article  Google Scholar 

  18. 18.

    Salvio, A.: Front. Phys. 6, 77 (2018)

    Article  Google Scholar 

  19. 19.

    Deser, S., Jackiw, R., Templeton, S.: Phys. Rev. Lett. 48, 975 (1982); Deser, S., Jackiw, R., Templeton, S.: Ann. Phys. 140, 372 (1982) [Erratum-ibid. 185, 406 (1988)]

  20. 20.

    Gergely, L.A.: Phys. Rev. D 58, 084030 (1998)

    ADS  MathSciNet  Article  Google Scholar 

  21. 21.

    MacGibbon, J.H.: Nature 329, 308–309 (1987)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The author thanks Yuuiti Sendouda for helpful communications.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hideki Maeda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maeda, H. Nonstaticity with type II, III, or IV matter field in \(f(R_{\mu \nu \rho \sigma },g^{\mu \nu })\) gravity. Gen Relativ Gravit 53, 90 (2021). https://doi.org/10.1007/s10714-021-02862-8

Download citation