Skip to main content

Lifshitz scaling effects on the holographic paramagnetic-ferromagnetic phase transition

Abstract

We disclose the effects of Lifshitz dynamical exponent z on the properties of holographic paramagnetic-ferromagnetic phase transition in the background of Lifshitz spacetime. To preserve the conformal invariance in higher dimensions, we consider the Power-Maxwell (PM) electrodynamics as our gauge field. We introduce a massive 2-form coupled to the PM field and perform the numerical shooting method in the probe limit by assuming the PM and the 2-form fields do not back-react on the background geometry. The obtained results indicate that the critical temperature decreases with increasing the strength of the power parameter q and dynamical exponent z. Besides, the formation of the magnetic moment in the black hole background is harder in the absence of an external magnetic field. At low temperatures, and in the absence of an external magnetic field, our result show the spontaneous magnetization and the ferromagnetic phase transition. We find that the critical exponent takes the universal value \(\beta = 1/2\) regardless of the parameters qzd, which is in agreement with the mean field theory. In the presence of an external magnetic field, the magnetic susceptibility satisfies the Curie-Weiss law.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    Since our chosen masses should satisfy the Breitenlohner-Freedman(BF) bound, \(4m^{2}-[z-(6-d)]^{2}>0\), therefore by considering \(m^{2}=1/8\), the dynamical exponent should be confined with \((6-d)-2m<z<2m+(6-d)\). So we have chosen the values for dynamical exponent as \(z=3/2, 7/4\) for \(d=4\). For \(d=5\), we have considered \(z=3/2, 17/10\) for dynamical exponent. Thus, for these choice of the parameter m and d, the values of Lifshitz dynamical exponent is restricted \(z<2\).

References

  1. 1.

    Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Microscopic theory of superconductivity. Phys. Rev. 106, 162 (1957)

    ADS  MathSciNet  Article  Google Scholar 

  2. 2.

    Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Theory of superconductivity. Phys. Rev. 108, 1175 (1957)

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    J. M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2, 231 (1998) [arXiv:9711200]

  4. 4.

    S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428, 105 (1998) [arXiv:9802109]

  5. 5.

    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2, 253 (1998) [arXiv:9802150]

  6. 6.

    Hartnoll, S.A.: Lectures on holographic methods for condensed matter physics. Class. Quant. Grav. 26, 224002 (2009). [arXiv:0903.3246]

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    Herzog, C.P.: Lectures on holographic superfluidity and superconductivity. J. Phys. A 42, 343001 (2009). [arXiv:0904.1975]

    MathSciNet  Article  Google Scholar 

  8. 8.

    McGreevy, J.: Holographic duality with a view toward many-body physics. Adv. High Energy Phys. 2010, 723105 (2010). [arXiv:0909.0518]

    Article  Google Scholar 

  9. 9.

    Herzog, C.P.: Analytic holographic superconductor. Phys. Rev. D 81, 126009 (2010). [arXiv:1003.3278]

    ADS  MathSciNet  Article  Google Scholar 

  10. 10.

    Gubser, S.S.: Breaking an Abelian gauge symmetry near a black hole horizon. Phys. Rev. D 78, 065034 (2008). [arXiv:0801.2977]

    ADS  Article  Google Scholar 

  11. 11.

    Montull, M., Pomarol, A., Silva, P.J.: The holographic superconductor vortex. Phys. Rev. Lett. 103, 091601 (2009). [arXiv:0906.2396]

    ADS  MathSciNet  Article  Google Scholar 

  12. 12.

    Donos, A., Gauntlett, J.P., Sonner, J., Withers, B.: Competing orders in M-theory: superfluids, stripes and metamagnetism. JHEP 1303, 108 (2013). [arXiv:1212.0871]

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    Albash, T., Johnson, C.V.: A holographic superconductor in an external magnetic field. JHEP 0809, 121 (2008). [arXiv:0804.3466]

    ADS  MathSciNet  Article  Google Scholar 

  14. 14.

    Montull, M., Pujolas, O., Salvio, A., Silva, P.J.: Magnetic response in the holographic insulator/superconductor transition. JHEP 1204, 135 (2012). [arXiv:1202.0006]

    ADS  Article  Google Scholar 

  15. 15.

    Iqbal, N., Liu, H., Mezei, M., Si, Q.: Quantum phase transitions in holographic models of magnetism and superconductors. Phys. Rev. D 82, 045002 (2010). [arXiv:1003.0010]

    ADS  Article  Google Scholar 

  16. 16.

    Hartnoll, S.A., Herzog, C.P., Horowitz, G.T.: Building a holographic superconductor. Phys. Rev. Lett. 101, 031601 (2008). [arXiv:0803.3295]

    ADS  Article  Google Scholar 

  17. 17.

    C. Lai, Q. Pan, J. Jing, Y. Wang, Analytical study on holographic superfluid in AdS soliton background, Phys. Lett. B 757, 65 (2016), [arXiv:1601.00134]

  18. 18.

    M. Rogatko, K.I. Wysokinski, Condensate flow in holographic models in the presence of dark matter, J. High Energy Phys. 1610, 152 (2016), [arXiv:1608.00343]

  19. 19.

    X.M. Kuang, E. Papantonopoulos, Building a holographic superconductor with a scalar field coupled kinematically to Einstein tensor , J. High Energy Phys. 1608, 161 (2016), [arXiv:1607.04928] [hep-th]

  20. 20.

    S.A.H. Mansoori, B. Mirza, A. Mokhtari, F.L. Dezaki, Z. Sherkatghanad, Weyl holographic superconductor in the Lifshitz black hole background, JHEP 1607, 111 (2016), [arXiv:1602.07245]

  21. 21.

    Y. Ling, P. Liu, C. Niu, J.P. Wu, Z.Y. Xian, Holographic entanglement entropy close to quantum phase transitions, JHEP 1604, 114 (2016), [arXiv:1502.03661]

  22. 22.

    R.G. Cai, L. Li, L.F. Li, R.Q. Yang, Introduction to holographic superconductor models, Sci. China, Phys. Mech. Astron. 58 (6), 060401 (2015) , [arXiv:1502.00437]

  23. 23.

    Wu, Y.B., Lu, J.W., Zhang, C.Y., Zhang, N., Zhang, X., Yang, Z.Q., Wu, S.Y.: Lifshitz effects on holographic p-wave superfluid. Phys. Lett. B 741, 138 (2015). [arXiv:1412.3689]

    ADS  Article  Google Scholar 

  24. 24.

    B. Binaei Ghotbabadi, M. Kord Zangeneh, A. Sheykhi, One-dimensional backreacting holographic superconductors with exponential nonlinear electrodynamics, Eur. Phys. J. C 78, 381 (2018), [arXiv:1804.05442]

  25. 25.

    M. Mohammadi, A. Sheykhi and M. Kord Zangeneh, Analytical and numerical study of backreacting one-dimensional holographic superconductors in the presence of Born-Infeld electrodynamics, Eur. Phys. J. C 78, 654 (2018), [arXiv:1805.07377]

  26. 26.

    M. Mohammadi, A. Sheykhi and M. Kord Zangeneh, One-dimensional backreacting holographic p-wave superconductors, Eur. Phys. J. C 78, 984 (2018), [arXiv:1901.10540]

  27. 27.

    M. Mohammadi, A. Sheykhi, Conductivity of the holographic p-wave superconductors with higher order corrections, Eur. Phys. J. C 79, 473 (2019), [arXiv:1908.07992 ]

  28. 28.

    Mohammadi, M., A. : Sheykhi, textitConductivity of the one-dimensional holographic p-wave superconductors in the presence of nonlinear electrodynamics. Phys. Rev. D 100, 086012 (2019)

  29. 29.

    Cai, R.G., Yang, R.Q.: Paramagnetism-ferromagnetism phase transition in a dyonic black hole. Phys. Rev. D 90, 081901 (2014). [arXiv:1404.2856]

    ADS  Article  Google Scholar 

  30. 30.

    Cai, R.G., Yang, R.Q.: Holographic model for the paramagnetism/antiferromagnetism phase transition. Phys. Rev. D 91, 086001 (2015). [arXiv:1404.7737]

    ADS  Article  Google Scholar 

  31. 31.

    Cai, R.G., Yang, R.Q.: Coexistence and competition of ferromagnetism and p-wave superconductivity in holographic model. Phys. Rev. D 91, 026001 (2015). [arXiv:1410.5080]

    ADS  Article  Google Scholar 

  32. 32.

    N. Yokoi, M. Ishihara, K. Sato and E. Saitoh,Holographic realization of ferromagnets, Phys. Rev. D 93, 026002 (2016) [arXiv:1508.01626]

  33. 33.

    R. G. Cai and R. Q. Yang, Antisymmetric tensor field and spontaneous magnetization in holographic duality, Phys. Rev. D 92, 046001 (2015) [arXiv:1504.00855]

  34. 34.

    R. G. Cai, R. Q. Yang, Y. B. Wu and C. Y. Zhang ,Massive 2-form field and holographic ferromagnetic phase transition, JHEP 021, 1511 (2015) [arXiv:1507.00546]

  35. 35.

    R. G. Cai and R. Q. Yang, Insulator/metal phase transition and colossal magnetoresistance in holographic model, Phys. Rev. D 92, 106002 (2015) [arXiv:1507.03105]

  36. 36.

    R. G. Cai and R. Q. Yang,Understanding strongly coupling magnetism from holographic duality [arXiv:1601.02936]

  37. 37.

    C. Y. Zhang, Y. B. Wu, Y. N. Zhang, H. Y. Wang and M. M. Wu, Holographic paramagnetism-ferromagnetism phase transition with the nonlinear electrodynamics, Nucl. Phys. B 914, 446 (2017), [arXiv:1609.09318v1]

  38. 38.

    Wu, Y.B., Zhang, C.Y., Lu, J.W., Fan, B., Shu, S., Liu, Y.C.: Holographic paramagnetism-ferromagnetism phase transition in the Born-Infeld electrodynamics. Phys. Lett. B 760, 469 (2016)

    ADS  Article  Google Scholar 

  39. 39.

    Jing, J., Pan, Q., Chen, S.: Holographic superconductors with Power-Maxwell field. JHEP 11, 045 (2011). [arXiv:1106.5181]

    ADS  Article  Google Scholar 

  40. 40.

    Jing, J., Jiang, L., Pan, Q.: Holographic superconductors for the Power-Maxwell field with backreactions. Class. Quantum Grav. 33, 025001 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  41. 41.

    A. Sheykhi, H. R. Salahi, A. Montakhab, Analytical and Numerical Study of Gauss-Bonnet Holographic Superconductors with Power-Maxwell Field, JHEP 04, 058 (2016) [arXiv:1603.00075]

  42. 42.

    Salahi, H.R., Sheykhi, A., Montakhab, A.: Effects of backreaction on power-maxwell holographic superconductors in gauss-bonnet gravity. Eur. Phys. J. C 76, 575 (2016). [arXiv:1608.05025]

    ADS  Article  Google Scholar 

  43. 43.

    A. Sheykhi, F. Shamsi, S. Davatolhagh The upper critical magnetic field of holographic superconductor with conformally invariant Power Maxwell electrodynamics, Can. J. Phys. 95, 450 (2017), [arXiv:1609.05040]

  44. 44.

    D. Hashemi Asl, A. Sheykhi, Meissner-like effect and conductivity of power-Maxwell holographic superconductors, Phys. Rev. D 101, 026012 (2020), [arXiv:1905.11810]

  45. 45.

    A. Sheykhi, D. Hashemi Asl, A. Dehyadegari, Conductivity of higher dimensional holographic superconductors with nonlinear electrodynamics, Phys. Lett. B 781, 139 (2018) [arXiv:1803.05724]

  46. 46.

    Kachru, S., Liu, X., Mulligan, M.: Gravity duals of lifshitz-like fixed points. Phys. Rev. D 78, 106005 (2008). [arXiv:0808.1725]

    ADS  MathSciNet  Article  Google Scholar 

  47. 47.

    C. Hoyos, B. Soo Kim, Y. Oz, Lifshitz Hydrodynamics, JHEP 2013, 145 (2013), [arXiv:1304.7481]

  48. 48.

    Bu, Y.: Holographic superconductors with z=2 Lifshitz scaling. Phys. Rev. D 86, 046007 (2012). [arXiv:1211.0037]

    ADS  Article  Google Scholar 

  49. 49.

    Lu, J.W., Wu, Y.B., Qian, P., Zhao, Y.Y., Zhang, X., Zhang, N.: Lifshitz scaling effects on holographic superconductors. Nucl. Phys. B 887, 112 (2014). [arXiv:1311.2699]

    ADS  Article  Google Scholar 

  50. 50.

    M. Natsuume and T. Okamura, Holographic Lifshitz superconductors: Analytic solution, Phys. Rev. D 97, 066016 (2018), [arXiv:1801.03154]

  51. 51.

    Z. Sherkatghanad, B. Mirza, F. Lalehgani Dezaki, Exponential nonlinear electrodynamics and backreaction effects on Holographic superconductor in the Lifshitz black hole background, Int. J. Mod. Phys. D 26, 1750175 (2017), [arXiv:1708.04289]

  52. 52.

    Zhao, Z., Pan, Q., Jing, J.: Notes on analytical study of holographic superconductors with Lifshitz scaling in external magnetic field. Phys. Lett. B 735, 438 (2014). [arXiv:1311.6260]

    ADS  Article  Google Scholar 

  53. 53.

    M. Mohammadi, A. Sheykhi, Lifshitz scaling effects on the holographic \(p\)-wave superconductors coupled to nonlinear electrodynamics, Eur. Phys. J. C 80, 928 (2020), [arXiv:2010.07105]

  54. 54.

    C. Y. Zhang, Y. B. Wu, Y. Y. Jin, Y. T. Chai, M. H. Hu and Z. Zhang, Lifshitz scaling effects on the holographic paramagnetism-ferromagnetism phase transition, Phys. Rev. D 93, 126001 (2016) [arXiv:1603.04149]

  55. 55.

    Ya-Bo, Wu., Zhang, Cheng-Yuan., Jian-Bo, Lu., Mu-Hong, Hu., Chai, Yun-Tian.: Holographic model for ferromagnetic phase transition in the Lifshitz black hole with the nonlinear electrodynamics. Phys. Lett. B 767, 264 (2017)

    ADS  Article  Google Scholar 

  56. 56.

    B. Binaei Gh., A. Sheykhi, G. H. Bordbar, Holographic paramagnetic ferromagnetic phase transition with Power Maxwell electrodynamics, Phys. Lett. B 797, 134896 (2019) [arXiv:1903.05451]

  57. 57.

    Hassaine, M., Martinez, C.: Higher-dimensional black holes with a conformally invariant Maxwell source. Phys. Rev. D 75, 027502 (2007). [arXiv:hep-th/0701058]

    ADS  MathSciNet  Article  Google Scholar 

  58. 58.

    Sheykhi, A.: Higher dimensional charged f(R) black holes. Phys. Rev. D 86, 024013 (2012). [arXiv:1209.2960]

    ADS  Article  Google Scholar 

  59. 59.

    Sheykhi, A., Hendi, S.H.: Power-law entropic corrections to Newton law and Friedmann equations Phys. Rev. D 84, 044023 (2011)

    Article  Google Scholar 

  60. 60.

    Sheykhi, A., Hendi, S.H.: Rotating black branes in \(f(R)\) gravity coupled to nonlinear Maxwell field. Phys. Rev. D 87, 084015 (2013)

    ADS  Article  Google Scholar 

  61. 61.

    A. Dehyadegari, M. Kord Zangeneh and A. Sheykhi,Holographic conductivity in the massive gravity with power-law Maxwell field, Phys. Lett. B 773, 344 (2017) [arXiv:1703.00975]

  62. 62.

    Pan, Q., Wang, B., Papantonopoulos, E., Oliveira, J., Pavan, A.B.: Holographic superconductors with various condensates in Einstein-Gauss-Bonnet gravity. Phys. Rev. D 81, 106007 (2010). [arXiv:0912.2475]

    ADS  Article  Google Scholar 

  63. 63.

    Zhao, Z., Pan, Q., Chen, S., Jing, J.: Notes on holographic superconductor models with the nonlinear electrodynamics. Nucl. Phys. B 871, 98 (2013). [arXiv:1212.6693]

    ADS  MathSciNet  Article  Google Scholar 

  64. 64.

    Jing, J., Pan, Q., Chen, S.: Holographic superconductor/insulator transition with logarithmic electromagnetic field in Gauss-Bonnet gravity. Phys. Lett. B 716, 385 (2012). [arXiv:1209.0893]

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the referee for constructive comments which helped us improve our paper. We thank the Research Council of Shiraz University. The work of A.S. has been supported financially by the Research Institute for Astronomy & Astrophysics of Maragha (RIAAM), Iran.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Sheykhi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghotbabadi, B.B., Sheykhi, A. & Bordbar, G.H. Lifshitz scaling effects on the holographic paramagnetic-ferromagnetic phase transition. Gen Relativ Gravit 53, 88 (2021). https://doi.org/10.1007/s10714-021-02857-5

Download citation

Keywords

  • Paramagnetic-ferromagnetic
  • Phase Transition
  • Lifshitz